| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2fvidinvd | Structured version Visualization version GIF version | ||
| Description: Show that two functions are inverse to each other by applying them twice to each value of their domains. (Contributed by AV, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2fvcoidd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 2fvcoidd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 2fvcoidd.i | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) |
| 2fvidf1od.i | ⊢ (𝜑 → ∀𝑏 ∈ 𝐵 (𝐹‘(𝐺‘𝑏)) = 𝑏) |
| Ref | Expression |
|---|---|
| 2fvidinvd | ⊢ (𝜑 → ◡𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fvcoidd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 2fvcoidd.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
| 3 | 2fvcoidd.i | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) | |
| 4 | 1, 2, 3 | 2fvcoidd 7295 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 5 | 2fvidf1od.i | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ 𝐵 (𝐹‘(𝐺‘𝑏)) = 𝑏) | |
| 6 | 2, 1, 5 | 2fvcoidd 7295 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
| 7 | 1, 2, 4, 6 | 2fcoidinvd 7293 | 1 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3052 ◡ccnv 5658 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: m2cpminv 22703 |
| Copyright terms: Public domain | W3C validator |