MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvidinvd Structured version   Visualization version   GIF version

Theorem 2fvidinvd 7228
Description: Show that two functions are inverse to each other by applying them twice to each value of their domains. (Contributed by AV, 13-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f (𝜑𝐹:𝐴𝐵)
2fvcoidd.g (𝜑𝐺:𝐵𝐴)
2fvcoidd.i (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
2fvidf1od.i (𝜑 → ∀𝑏𝐵 (𝐹‘(𝐺𝑏)) = 𝑏)
Assertion
Ref Expression
2fvidinvd (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝐴,𝑎   𝐹,𝑎   𝐺,𝑎   𝐵,𝑏   𝐹,𝑏   𝐺,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑏)   𝐵(𝑎)

Proof of Theorem 2fvidinvd
StepHypRef Expression
1 2fvcoidd.f . 2 (𝜑𝐹:𝐴𝐵)
2 2fvcoidd.g . 2 (𝜑𝐺:𝐵𝐴)
3 2fvcoidd.i . . 3 (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
41, 2, 32fvcoidd 7226 . 2 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
5 2fvidf1od.i . . 3 (𝜑 → ∀𝑏𝐵 (𝐹‘(𝐺𝑏)) = 𝑏)
62, 1, 52fvcoidd 7226 . 2 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
71, 2, 4, 62fcoidinvd 7224 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3047  ccnv 5610  wf 6472  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by:  m2cpminv  22670
  Copyright terms: Public domain W3C validator