| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2fvidinvd | Structured version Visualization version GIF version | ||
| Description: Show that two functions are inverse to each other by applying them twice to each value of their domains. (Contributed by AV, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| 2fvcoidd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 2fvcoidd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 2fvcoidd.i | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) |
| 2fvidf1od.i | ⊢ (𝜑 → ∀𝑏 ∈ 𝐵 (𝐹‘(𝐺‘𝑏)) = 𝑏) |
| Ref | Expression |
|---|---|
| 2fvidinvd | ⊢ (𝜑 → ◡𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fvcoidd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 2fvcoidd.g | . 2 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
| 3 | 2fvcoidd.i | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) | |
| 4 | 1, 2, 3 | 2fvcoidd 7226 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 5 | 2fvidf1od.i | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ 𝐵 (𝐹‘(𝐺‘𝑏)) = 𝑏) | |
| 6 | 2, 1, 5 | 2fvcoidd 7226 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
| 7 | 1, 2, 4, 6 | 2fcoidinvd 7224 | 1 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3047 ◡ccnv 5610 ⟶wf 6472 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: m2cpminv 22670 |
| Copyright terms: Public domain | W3C validator |