Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrfcnv | Structured version Visualization version GIF version |
Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
Ref | Expression |
---|---|
pmtrfcnv | ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
3 | eqid 2737 | . . . . . 6 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
4 | 1, 2, 3 | pmtrfrn 19133 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
5 | 4 | simpld 495 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
6 | 1 | pmtrf 19130 | . . . 4 ⊢ ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
8 | 4 | simprd 496 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) |
9 | 8 | feq1d 6620 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹:𝐷⟶𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷)) |
10 | 7, 9 | mpbird 256 | . 2 ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷⟶𝐷) |
11 | 1, 2 | pmtrfinv 19136 | . 2 ⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) |
12 | 10, 10, 11, 11 | 2fcoidinvd 7204 | 1 ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3893 ⊆ wss 3896 class class class wbr 5085 I cid 5504 ◡ccnv 5604 dom cdm 5605 ran crn 5606 ⟶wf 6459 ‘cfv 6463 2oc2o 8336 ≈ cen 8776 pmTrspcpmtr 19116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-om 7756 df-1o 8342 df-2o 8343 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pmtr 19117 |
This theorem is referenced by: symgtrinv 19147 psgnunilem1 19168 pmtrcnel2 31467 |
Copyright terms: Public domain | W3C validator |