MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfcnv Structured version   Visualization version   GIF version

Theorem pmtrfcnv 18092
Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfcnv (𝐹𝑅𝐹 = 𝐹)

Proof of Theorem pmtrfcnv
StepHypRef Expression
1 pmtrrn.t . . . . . 6 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 eqid 2771 . . . . . 6 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 18086 . . . . 5 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 478 . . . 4 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜))
61pmtrf 18083 . . . 4 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2𝑜) → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
75, 6syl 17 . . 3 (𝐹𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
84simprd 479 . . . 4 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
98feq1d 6171 . . 3 (𝐹𝑅 → (𝐹:𝐷𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷))
107, 9mpbird 247 . 2 (𝐹𝑅𝐹:𝐷𝐷)
111, 2pmtrfinv 18089 . 2 (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))
1210, 10, 11, 112fcoidinvd 6694 1 (𝐹𝑅𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  cdif 3721  wss 3724   class class class wbr 4787   I cid 5157  ccnv 5249  dom cdm 5250  ran crn 5251  wf 6028  cfv 6032  2𝑜c2o 7708  cen 8107  pmTrspcpmtr 18069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-om 7214  df-1o 7714  df-2o 7715  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-pmtr 18070
This theorem is referenced by:  symgtrinv  18100  psgnunilem1  18121
  Copyright terms: Public domain W3C validator