| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrfcnv | Structured version Visualization version GIF version | ||
| Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
| Ref | Expression |
|---|---|
| pmtrfcnv | ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
| 3 | eqid 2736 | . . . . . 6 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
| 4 | 1, 2, 3 | pmtrfrn 19444 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
| 5 | 4 | simpld 494 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
| 6 | 1 | pmtrf 19441 | . . . 4 ⊢ ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
| 8 | 4 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) |
| 9 | 8 | feq1d 6695 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹:𝐷⟶𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷)) |
| 10 | 7, 9 | mpbird 257 | . 2 ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷⟶𝐷) |
| 11 | 1, 2 | pmtrfinv 19447 | . 2 ⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) |
| 12 | 10, 10, 11, 11 | 2fcoidinvd 7293 | 1 ⊢ (𝐹 ∈ 𝑅 → ◡𝐹 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 class class class wbr 5124 I cid 5552 ◡ccnv 5658 dom cdm 5659 ran crn 5660 ⟶wf 6532 ‘cfv 6536 2oc2o 8479 ≈ cen 8961 pmTrspcpmtr 19427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pmtr 19428 |
| This theorem is referenced by: symgtrinv 19458 psgnunilem1 19479 pmtrcnel2 33106 |
| Copyright terms: Public domain | W3C validator |