MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvcoidd Structured version   Visualization version   GIF version

Theorem 2fvcoidd 7169
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f (𝜑𝐹:𝐴𝐵)
2fvcoidd.g (𝜑𝐺:𝐵𝐴)
2fvcoidd.i (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
Assertion
Ref Expression
2fvcoidd (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐹,𝑎   𝐺,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)

Proof of Theorem 2fvcoidd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fvcoidd.g . . 3 (𝜑𝐺:𝐵𝐴)
2 2fvcoidd.f . . 3 (𝜑𝐹:𝐴𝐵)
3 fcompt 7005 . . 3 ((𝐺:𝐵𝐴𝐹:𝐴𝐵) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
5 2fvcoidd.i . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
6 2fveq3 6779 . . . . . . . 8 (𝑎 = 𝑥 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑥)))
7 id 22 . . . . . . . 8 (𝑎 = 𝑥𝑎 = 𝑥)
86, 7eqeq12d 2754 . . . . . . 7 (𝑎 = 𝑥 → ((𝐺‘(𝐹𝑎)) = 𝑎 ↔ (𝐺‘(𝐹𝑥)) = 𝑥))
98rspccv 3558 . . . . . 6 (∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
105, 9syl 17 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
1110imp 407 . . . 4 ((𝜑𝑥𝐴) → (𝐺‘(𝐹𝑥)) = 𝑥)
1211mpteq2dva 5174 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = (𝑥𝐴𝑥))
13 mptresid 5958 . . 3 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
1412, 13eqtr4di 2796 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = ( I ↾ 𝐴))
154, 14eqtrd 2778 1 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  cmpt 5157   I cid 5488  cres 5591  ccom 5593  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  2fvidf1od  7170  2fvidinvd  7171
  Copyright terms: Public domain W3C validator