Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2fvcoidd | Structured version Visualization version GIF version |
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
2fvcoidd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2fvcoidd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
2fvcoidd.i | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) |
Ref | Expression |
---|---|
2fvcoidd | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fvcoidd.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
2 | 2fvcoidd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fcompt 7005 | . . 3 ⊢ ((𝐺:𝐵⟶𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | |
4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) |
5 | 2fvcoidd.i | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) | |
6 | 2fveq3 6779 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝐺‘(𝐹‘𝑎)) = (𝐺‘(𝐹‘𝑥))) | |
7 | id 22 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
8 | 6, 7 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → ((𝐺‘(𝐹‘𝑎)) = 𝑎 ↔ (𝐺‘(𝐹‘𝑥)) = 𝑥)) |
9 | 8 | rspccv 3558 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎 → (𝑥 ∈ 𝐴 → (𝐺‘(𝐹‘𝑥)) = 𝑥)) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐺‘(𝐹‘𝑥)) = 𝑥)) |
11 | 10 | imp 407 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘(𝐹‘𝑥)) = 𝑥) |
12 | 11 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
13 | mptresid 5958 | . . 3 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
14 | 12, 13 | eqtr4di 2796 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥))) = ( I ↾ 𝐴)) |
15 | 4, 14 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: 2fvidf1od 7170 2fvidinvd 7171 |
Copyright terms: Public domain | W3C validator |