|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2fvcoidd | Structured version Visualization version GIF version | ||
| Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| 2fvcoidd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 2fvcoidd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | 
| 2fvcoidd.i | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) | 
| Ref | Expression | 
|---|---|
| 2fvcoidd | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2fvcoidd.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
| 2 | 2fvcoidd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | fcompt 7152 | . . 3 ⊢ ((𝐺:𝐵⟶𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | 
| 5 | 2fvcoidd.i | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) | |
| 6 | 2fveq3 6910 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝐺‘(𝐹‘𝑎)) = (𝐺‘(𝐹‘𝑥))) | |
| 7 | id 22 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
| 8 | 6, 7 | eqeq12d 2752 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → ((𝐺‘(𝐹‘𝑎)) = 𝑎 ↔ (𝐺‘(𝐹‘𝑥)) = 𝑥)) | 
| 9 | 8 | rspccv 3618 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎 → (𝑥 ∈ 𝐴 → (𝐺‘(𝐹‘𝑥)) = 𝑥)) | 
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐺‘(𝐹‘𝑥)) = 𝑥)) | 
| 11 | 10 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘(𝐹‘𝑥)) = 𝑥) | 
| 12 | 11 | mpteq2dva 5241 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ 𝑥)) | 
| 13 | mptresid 6068 | . . 3 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
| 14 | 12, 13 | eqtr4di 2794 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥))) = ( I ↾ 𝐴)) | 
| 15 | 4, 14 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ↦ cmpt 5224 I cid 5576 ↾ cres 5686 ∘ ccom 5688 ⟶wf 6556 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 | 
| This theorem is referenced by: 2fvidf1od 7319 2fvidinvd 7320 | 
| Copyright terms: Public domain | W3C validator |