Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2fvcoidd | Structured version Visualization version GIF version |
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
2fvcoidd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2fvcoidd.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
2fvcoidd.i | ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) |
Ref | Expression |
---|---|
2fvcoidd | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fvcoidd.g | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | |
2 | 2fvcoidd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fcompt 6987 | . . 3 ⊢ ((𝐺:𝐵⟶𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) |
5 | 2fvcoidd.i | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎) | |
6 | 2fveq3 6761 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝐺‘(𝐹‘𝑎)) = (𝐺‘(𝐹‘𝑥))) | |
7 | id 22 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → 𝑎 = 𝑥) | |
8 | 6, 7 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → ((𝐺‘(𝐹‘𝑎)) = 𝑎 ↔ (𝐺‘(𝐹‘𝑥)) = 𝑥)) |
9 | 8 | rspccv 3549 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝐴 (𝐺‘(𝐹‘𝑎)) = 𝑎 → (𝑥 ∈ 𝐴 → (𝐺‘(𝐹‘𝑥)) = 𝑥)) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐺‘(𝐹‘𝑥)) = 𝑥)) |
11 | 10 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘(𝐹‘𝑥)) = 𝑥) |
12 | 11 | mpteq2dva 5170 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
13 | mptresid 5947 | . . 3 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
14 | 12, 13 | eqtr4di 2797 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥))) = ( I ↾ 𝐴)) |
15 | 4, 14 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: 2fvidf1od 7150 2fvidinvd 7151 |
Copyright terms: Public domain | W3C validator |