MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvcoidd Structured version   Visualization version   GIF version

Theorem 2fvcoidd 7318
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f (𝜑𝐹:𝐴𝐵)
2fvcoidd.g (𝜑𝐺:𝐵𝐴)
2fvcoidd.i (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
Assertion
Ref Expression
2fvcoidd (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐹,𝑎   𝐺,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)

Proof of Theorem 2fvcoidd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fvcoidd.g . . 3 (𝜑𝐺:𝐵𝐴)
2 2fvcoidd.f . . 3 (𝜑𝐹:𝐴𝐵)
3 fcompt 7152 . . 3 ((𝐺:𝐵𝐴𝐹:𝐴𝐵) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
5 2fvcoidd.i . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
6 2fveq3 6910 . . . . . . . 8 (𝑎 = 𝑥 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑥)))
7 id 22 . . . . . . . 8 (𝑎 = 𝑥𝑎 = 𝑥)
86, 7eqeq12d 2752 . . . . . . 7 (𝑎 = 𝑥 → ((𝐺‘(𝐹𝑎)) = 𝑎 ↔ (𝐺‘(𝐹𝑥)) = 𝑥))
98rspccv 3618 . . . . . 6 (∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
105, 9syl 17 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
1110imp 406 . . . 4 ((𝜑𝑥𝐴) → (𝐺‘(𝐹𝑥)) = 𝑥)
1211mpteq2dva 5241 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = (𝑥𝐴𝑥))
13 mptresid 6068 . . 3 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
1412, 13eqtr4di 2794 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = ( I ↾ 𝐴))
154, 14eqtrd 2776 1 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3060  cmpt 5224   I cid 5576  cres 5686  ccom 5688  wf 6556  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568
This theorem is referenced by:  2fvidf1od  7319  2fvidinvd  7320
  Copyright terms: Public domain W3C validator