MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvcoidd Structured version   Visualization version   GIF version

Theorem 2fvcoidd 7317
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f (𝜑𝐹:𝐴𝐵)
2fvcoidd.g (𝜑𝐺:𝐵𝐴)
2fvcoidd.i (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
Assertion
Ref Expression
2fvcoidd (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐹,𝑎   𝐺,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)

Proof of Theorem 2fvcoidd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fvcoidd.g . . 3 (𝜑𝐺:𝐵𝐴)
2 2fvcoidd.f . . 3 (𝜑𝐹:𝐴𝐵)
3 fcompt 7153 . . 3 ((𝐺:𝐵𝐴𝐹:𝐴𝐵) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
5 2fvcoidd.i . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
6 2fveq3 6912 . . . . . . . 8 (𝑎 = 𝑥 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑥)))
7 id 22 . . . . . . . 8 (𝑎 = 𝑥𝑎 = 𝑥)
86, 7eqeq12d 2751 . . . . . . 7 (𝑎 = 𝑥 → ((𝐺‘(𝐹𝑎)) = 𝑎 ↔ (𝐺‘(𝐹𝑥)) = 𝑥))
98rspccv 3619 . . . . . 6 (∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
105, 9syl 17 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
1110imp 406 . . . 4 ((𝜑𝑥𝐴) → (𝐺‘(𝐹𝑥)) = 𝑥)
1211mpteq2dva 5248 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = (𝑥𝐴𝑥))
13 mptresid 6071 . . 3 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
1412, 13eqtr4di 2793 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = ( I ↾ 𝐴))
154, 14eqtrd 2775 1 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  cmpt 5231   I cid 5582  cres 5691  ccom 5693  wf 6559  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  2fvidf1od  7318  2fvidinvd  7319
  Copyright terms: Public domain W3C validator