MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvidf1od Structured version   Visualization version   GIF version

Theorem 2fvidf1od 7239
Description: A function is bijective if it has an inverse function. (Contributed by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f (𝜑𝐹:𝐴𝐵)
2fvcoidd.g (𝜑𝐺:𝐵𝐴)
2fvcoidd.i (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
2fvidf1od.i (𝜑 → ∀𝑏𝐵 (𝐹‘(𝐺𝑏)) = 𝑏)
Assertion
Ref Expression
2fvidf1od (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑎   𝐹,𝑎   𝐺,𝑎   𝐵,𝑏   𝐹,𝑏   𝐺,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑏)   𝐵(𝑎)

Proof of Theorem 2fvidf1od
StepHypRef Expression
1 2fvcoidd.f . 2 (𝜑𝐹:𝐴𝐵)
2 2fvcoidd.g . 2 (𝜑𝐺:𝐵𝐴)
3 2fvcoidd.i . . 3 (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
41, 2, 32fvcoidd 7238 . 2 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
5 2fvidf1od.i . . 3 (𝜑 → ∀𝑏𝐵 (𝐹‘(𝐺𝑏)) = 𝑏)
62, 1, 52fvcoidd 7238 . 2 (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))
71, 2, 4, 6fcof1od 7235 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3044  wf 6482  1-1-ontowf1o 6485  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  m2cpminv  22663  foresf1o  32466  primrootscoprbij  42075  sticksstones11  42129  sticksstones12  42131  sticksstones19  42138
  Copyright terms: Public domain W3C validator