| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rexuz | Structured version Visualization version GIF version | ||
| Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.) |
| Ref | Expression |
|---|---|
| 2rexuz | ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexuz2 12799 | . . 3 ⊢ (∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑))) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑))) |
| 3 | df-rex 3058 | . 2 ⊢ (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑))) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 ≤ cle 11154 ℤcz 12475 ℤ≥cuz 12738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-neg 11354 df-z 12476 df-uz 12739 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |