MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexuz Structured version   Visualization version   GIF version

Theorem 2rexuz 12569
Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.)
Assertion
Ref Expression
2rexuz (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
Distinct variable group:   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)

Proof of Theorem 2rexuz
StepHypRef Expression
1 rexuz2 12568 . . 3 (∃𝑛 ∈ (ℤ𝑚)𝜑 ↔ (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
21exbii 1851 . 2 (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
3 df-rex 3069 . 2 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑)))
42, 3bitr4i 277 1 (∃𝑚𝑛 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚𝑛𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  cle 10941  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-neg 11138  df-z 12250  df-uz 12512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator