| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
| 2 | peano2z 12638 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
| 4 | zre 12597 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 12597 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | letrp1 12090 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
| 7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
| 10 | eluz2 12863 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 11 | eluz2 12863 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 1c1 11135 + caddc 11137 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 |
| This theorem is referenced by: peano2uzs 12923 peano2uzr 12924 uzaddcl 12925 fzsplit 13572 fzssp1 13589 fzsuc 13593 fzpred 13594 fzp1ss 13597 fzp1elp1 13599 fztp 13602 fzdif1 13627 fzneuz 13630 fzosplitsnm1 13761 fzofzp1 13785 fzosplitsn 13796 fzosplitpr 13797 fzostep1 13804 om2uzuzi 13972 uzrdgsuci 13983 fzen2 13992 fzfi 13995 seqsplit 14058 seqf1olem1 14064 seqf1olem2 14065 seqz 14073 faclbnd3 14315 bcm1k 14338 seqcoll 14487 seqcoll2 14488 swrds1 14689 pfxccatpfx2 14760 clim2ser 15676 clim2ser2 15677 serf0 15702 iseraltlem2 15704 iseralt 15706 fsump1 15777 fsump1i 15790 fsumparts 15827 cvgcmp 15837 isum1p 15862 isumsup2 15867 climcndslem1 15870 climcndslem2 15871 climcnds 15872 cvgrat 15904 mertenslem1 15905 clim2prod 15909 clim2div 15910 ntrivcvgfvn0 15920 fprodntriv 15963 fprodp1 15990 fprodabs 15995 binomfallfaclem2 16061 pcfac 16924 gsumsplit1r 18670 gsumprval 18671 telgsumfzslem 19974 telgsumfzs 19975 dvply2g 26249 dvply2gOLD 26250 aaliou3lem2 26308 ppinprm 27119 chtnprm 27121 ppiublem1 27170 chtublem 27179 chtub 27180 bposlem6 27257 pntlemf 27573 ostth2lem2 27602 clwwlkvbij 30099 fzsplit3 32775 esumcvg 34122 sseqf 34429 gsumnunsn 34578 signstfvp 34608 iprodefisumlem 35762 poimirlem1 37650 poimirlem2 37651 poimirlem3 37652 poimirlem4 37653 poimirlem6 37655 poimirlem7 37656 poimirlem8 37657 poimirlem9 37658 poimirlem12 37661 poimirlem13 37662 poimirlem14 37663 poimirlem15 37664 poimirlem16 37665 poimirlem17 37666 poimirlem18 37667 poimirlem19 37668 poimirlem20 37669 poimirlem21 37670 poimirlem22 37671 poimirlem23 37672 poimirlem24 37673 poimirlem26 37675 poimirlem27 37676 poimirlem31 37680 poimirlem32 37681 sdclem2 37771 fdc 37774 mettrifi 37786 bfplem2 37852 rexrabdioph 42784 monotuz 42932 wallispilem1 46061 dirkertrigeqlem2 46095 sge0p1 46410 carageniuncllem1 46517 iccpartres 47399 iccelpart 47414 fmtno4prm 47556 |
| Copyright terms: Public domain | W3C validator |