| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
| 2 | peano2z 12534 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
| 4 | zre 12493 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 12493 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | letrp1 11986 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
| 7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
| 10 | eluz2 12759 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 11 | eluz2 12759 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 1c1 11029 + caddc 11031 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 |
| This theorem is referenced by: peano2uzs 12821 peano2uzr 12822 uzaddcl 12823 fzsplit 13471 fzssp1 13488 fzsuc 13492 fzpred 13493 fzp1ss 13496 fzp1elp1 13498 fztp 13501 fzdif1 13526 fzneuz 13529 fzosplitsnm1 13661 fzofzp1 13685 fzosplitsn 13696 fzosplitpr 13697 fzostep1 13704 om2uzuzi 13874 uzrdgsuci 13885 fzen2 13894 fzfi 13897 seqsplit 13960 seqf1olem1 13966 seqf1olem2 13967 seqz 13975 faclbnd3 14217 bcm1k 14240 seqcoll 14389 seqcoll2 14390 swrds1 14591 pfxccatpfx2 14661 clim2ser 15580 clim2ser2 15581 serf0 15606 iseraltlem2 15608 iseralt 15610 fsump1 15681 fsump1i 15694 fsumparts 15731 cvgcmp 15741 isum1p 15766 isumsup2 15771 climcndslem1 15774 climcndslem2 15775 climcnds 15776 cvgrat 15808 mertenslem1 15809 clim2prod 15813 clim2div 15814 ntrivcvgfvn0 15824 fprodntriv 15867 fprodp1 15894 fprodabs 15899 binomfallfaclem2 15965 pcfac 16829 gsumsplit1r 18579 gsumprval 18580 telgsumfzslem 19885 telgsumfzs 19886 dvply2g 26208 dvply2gOLD 26209 aaliou3lem2 26267 ppinprm 27078 chtnprm 27080 ppiublem1 27129 chtublem 27138 chtub 27139 bposlem6 27216 pntlemf 27532 ostth2lem2 27561 clwwlkvbij 30075 fzsplit3 32749 esumcvg 34052 sseqf 34359 gsumnunsn 34508 signstfvp 34538 iprodefisumlem 35712 poimirlem1 37600 poimirlem2 37601 poimirlem3 37602 poimirlem4 37603 poimirlem6 37605 poimirlem7 37606 poimirlem8 37607 poimirlem9 37608 poimirlem12 37611 poimirlem13 37612 poimirlem14 37613 poimirlem15 37614 poimirlem16 37615 poimirlem17 37616 poimirlem18 37617 poimirlem19 37618 poimirlem20 37619 poimirlem21 37620 poimirlem22 37621 poimirlem23 37622 poimirlem24 37623 poimirlem26 37625 poimirlem27 37626 poimirlem31 37630 poimirlem32 37631 sdclem2 37721 fdc 37724 mettrifi 37736 bfplem2 37802 rexrabdioph 42767 monotuz 42914 wallispilem1 46047 dirkertrigeqlem2 46081 sge0p1 46396 carageniuncllem1 46503 iccpartres 47403 iccelpart 47418 fmtno4prm 47560 |
| Copyright terms: Public domain | W3C validator |