![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
2 | peano2z 12599 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
4 | zre 12558 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 12558 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | letrp1 12054 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
7 | 5, 6 | syl3an2 1161 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
8 | 4, 7 | syl3an1 1160 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
9 | 1, 3, 8 | 3jca 1125 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
10 | eluz2 12824 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
11 | eluz2 12824 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 ℝcr 11104 1c1 11106 + caddc 11108 ≤ cle 11245 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 |
This theorem is referenced by: peano2uzs 12882 peano2uzr 12883 uzaddcl 12884 fzsplit 13523 fzssp1 13540 fzsuc 13544 fzpred 13545 fzp1ss 13548 fzp1elp1 13550 fztp 13553 fzneuz 13578 fzosplitsnm1 13703 fzofzp1 13725 fzosplitsn 13736 fzosplitpr 13737 fzostep1 13744 om2uzuzi 13910 uzrdgsuci 13921 fzen2 13930 fzfi 13933 seqsplit 13997 seqf1olem1 14003 seqf1olem2 14004 seqz 14012 faclbnd3 14248 bcm1k 14271 seqcoll 14421 seqcoll2 14422 swrds1 14612 pfxccatpfx2 14683 clim2ser 15597 clim2ser2 15598 serf0 15623 iseraltlem2 15625 iseralt 15627 fsump1 15698 fsump1i 15711 fsumparts 15748 cvgcmp 15758 isum1p 15783 isumsup2 15788 climcndslem1 15791 climcndslem2 15792 climcnds 15793 cvgrat 15825 mertenslem1 15826 clim2prod 15830 clim2div 15831 ntrivcvgfvn0 15841 fprodntriv 15882 fprodp1 15909 fprodabs 15914 binomfallfaclem2 15980 pcfac 16828 gsumsplit1r 18607 gsumprval 18608 telgsumfzslem 19893 telgsumfzs 19894 dvply2g 26127 aaliou3lem2 26185 ppinprm 26988 chtnprm 26990 ppiublem1 27039 chtublem 27048 chtub 27049 bposlem6 27126 pntlemf 27442 ostth2lem2 27471 clwwlkvbij 29790 fzsplit3 32429 esumcvg 33539 sseqf 33846 gsumnunsn 34007 signstfvp 34037 iprodefisumlem 35171 poimirlem1 36945 poimirlem2 36946 poimirlem3 36947 poimirlem4 36948 poimirlem6 36950 poimirlem7 36951 poimirlem8 36952 poimirlem9 36953 poimirlem12 36956 poimirlem13 36957 poimirlem14 36958 poimirlem15 36959 poimirlem16 36960 poimirlem17 36961 poimirlem18 36962 poimirlem19 36963 poimirlem20 36964 poimirlem21 36965 poimirlem22 36966 poimirlem23 36967 poimirlem24 36968 poimirlem26 36970 poimirlem27 36971 poimirlem31 36975 poimirlem32 36976 sdclem2 37066 fdc 37069 mettrifi 37081 bfplem2 37147 rexrabdioph 41987 monotuz 42135 wallispilem1 45232 dirkertrigeqlem2 45266 sge0p1 45581 carageniuncllem1 45688 iccpartres 46537 iccelpart 46552 fmtno4prm 46694 |
Copyright terms: Public domain | W3C validator |