![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
2 | peano2z 12441 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
4 | zre 12403 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 12403 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | letrp1 11899 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
7 | 5, 6 | syl3an2 1163 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
8 | 4, 7 | syl3an1 1162 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
9 | 1, 3, 8 | 3jca 1127 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
10 | eluz2 12668 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
11 | eluz2 12668 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
12 | 9, 10, 11 | 3imtr4i 291 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6466 (class class class)co 7317 ℝcr 10950 1c1 10952 + caddc 10954 ≤ cle 11090 ℤcz 12399 ℤ≥cuz 12662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-n0 12314 df-z 12400 df-uz 12663 |
This theorem is referenced by: peano2uzs 12722 peano2uzr 12723 uzaddcl 12724 fzsplit 13362 fzssp1 13379 fzsuc 13383 fzpred 13384 fzp1ss 13387 fzp1elp1 13389 fztp 13392 fzneuz 13417 fzosplitsnm1 13542 fzofzp1 13564 fzosplitsn 13575 fzosplitpr 13576 fzostep1 13583 om2uzuzi 13749 uzrdgsuci 13760 fzen2 13769 fzfi 13772 seqsplit 13836 seqf1olem1 13842 seqf1olem2 13843 seqz 13851 faclbnd3 14086 bcm1k 14109 seqcoll 14257 seqcoll2 14258 swrds1 14458 pfxccatpfx2 14529 clim2ser 15445 clim2ser2 15446 serf0 15471 iseraltlem2 15473 iseralt 15475 fsump1 15547 fsump1i 15560 fsumparts 15597 cvgcmp 15607 isum1p 15632 isumsup2 15637 climcndslem1 15640 climcndslem2 15641 climcnds 15642 cvgrat 15674 mertenslem1 15675 clim2prod 15679 clim2div 15680 ntrivcvgfvn0 15690 fprodntriv 15731 fprodp1 15758 fprodabs 15763 binomfallfaclem2 15829 pcfac 16677 gsumsplit1r 18448 gsumprval 18449 telgsumfzslem 19664 telgsumfzs 19665 dvply2g 25528 aaliou3lem2 25586 ppinprm 26384 chtnprm 26386 ppiublem1 26433 chtublem 26442 chtub 26443 bposlem6 26520 pntlemf 26836 ostth2lem2 26865 clwwlkvbij 28613 fzsplit3 31250 esumcvg 32194 sseqf 32499 gsumnunsn 32660 signstfvp 32690 iprodefisumlem 33841 poimirlem1 35850 poimirlem2 35851 poimirlem3 35852 poimirlem4 35853 poimirlem6 35855 poimirlem7 35856 poimirlem8 35857 poimirlem9 35858 poimirlem12 35861 poimirlem13 35862 poimirlem14 35863 poimirlem15 35864 poimirlem16 35865 poimirlem17 35866 poimirlem18 35867 poimirlem19 35868 poimirlem20 35869 poimirlem21 35870 poimirlem22 35871 poimirlem23 35872 poimirlem24 35873 poimirlem26 35875 poimirlem27 35876 poimirlem31 35880 poimirlem32 35881 sdclem2 35972 fdc 35975 mettrifi 35987 bfplem2 36053 rexrabdioph 40832 monotuz 40980 wallispilem1 43856 dirkertrigeqlem2 43890 sge0p1 44203 carageniuncllem1 44310 iccpartres 45135 iccelpart 45150 fmtno4prm 45292 |
Copyright terms: Public domain | W3C validator |