|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
| 2 | peano2z 12660 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) | 
| 4 | zre 12619 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 12619 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | letrp1 12112 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
| 7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | 
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | 
| 9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | 
| 10 | eluz2 12885 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 11 | eluz2 12885 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 + caddc 11159 ≤ cle 11297 ℤcz 12615 ℤ≥cuz 12879 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 | 
| This theorem is referenced by: peano2uzs 12945 peano2uzr 12946 uzaddcl 12947 fzsplit 13591 fzssp1 13608 fzsuc 13612 fzpred 13613 fzp1ss 13616 fzp1elp1 13618 fztp 13621 fzdif1 13646 fzneuz 13649 fzosplitsnm1 13780 fzofzp1 13804 fzosplitsn 13815 fzosplitpr 13816 fzostep1 13823 om2uzuzi 13991 uzrdgsuci 14002 fzen2 14011 fzfi 14014 seqsplit 14077 seqf1olem1 14083 seqf1olem2 14084 seqz 14092 faclbnd3 14332 bcm1k 14355 seqcoll 14504 seqcoll2 14505 swrds1 14705 pfxccatpfx2 14776 clim2ser 15692 clim2ser2 15693 serf0 15718 iseraltlem2 15720 iseralt 15722 fsump1 15793 fsump1i 15806 fsumparts 15843 cvgcmp 15853 isum1p 15878 isumsup2 15883 climcndslem1 15886 climcndslem2 15887 climcnds 15888 cvgrat 15920 mertenslem1 15921 clim2prod 15925 clim2div 15926 ntrivcvgfvn0 15936 fprodntriv 15979 fprodp1 16006 fprodabs 16011 binomfallfaclem2 16077 pcfac 16938 gsumsplit1r 18701 gsumprval 18702 telgsumfzslem 20007 telgsumfzs 20008 dvply2g 26327 dvply2gOLD 26328 aaliou3lem2 26386 ppinprm 27196 chtnprm 27198 ppiublem1 27247 chtublem 27256 chtub 27257 bposlem6 27334 pntlemf 27650 ostth2lem2 27679 clwwlkvbij 30133 fzsplit3 32796 esumcvg 34088 sseqf 34395 gsumnunsn 34557 signstfvp 34587 iprodefisumlem 35741 poimirlem1 37629 poimirlem2 37630 poimirlem3 37631 poimirlem4 37632 poimirlem6 37634 poimirlem7 37635 poimirlem8 37636 poimirlem9 37637 poimirlem12 37640 poimirlem13 37641 poimirlem14 37642 poimirlem15 37643 poimirlem16 37644 poimirlem17 37645 poimirlem18 37646 poimirlem19 37647 poimirlem20 37648 poimirlem21 37649 poimirlem22 37650 poimirlem23 37651 poimirlem24 37652 poimirlem26 37654 poimirlem27 37655 poimirlem31 37659 poimirlem32 37660 sdclem2 37750 fdc 37753 mettrifi 37765 bfplem2 37831 rexrabdioph 42810 monotuz 42958 wallispilem1 46085 dirkertrigeqlem2 46119 sge0p1 46434 carageniuncllem1 46541 iccpartres 47410 iccelpart 47425 fmtno4prm 47567 | 
| Copyright terms: Public domain | W3C validator |