![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
2 | peano2z 12684 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
4 | zre 12643 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 12643 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | letrp1 12138 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
10 | eluz2 12909 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
11 | eluz2 12909 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 |
This theorem is referenced by: peano2uzs 12967 peano2uzr 12968 uzaddcl 12969 fzsplit 13610 fzssp1 13627 fzsuc 13631 fzpred 13632 fzp1ss 13635 fzp1elp1 13637 fztp 13640 fzneuz 13665 fzosplitsnm1 13791 fzofzp1 13814 fzosplitsn 13825 fzosplitpr 13826 fzostep1 13833 om2uzuzi 14000 uzrdgsuci 14011 fzen2 14020 fzfi 14023 seqsplit 14086 seqf1olem1 14092 seqf1olem2 14093 seqz 14101 faclbnd3 14341 bcm1k 14364 seqcoll 14513 seqcoll2 14514 swrds1 14714 pfxccatpfx2 14785 clim2ser 15703 clim2ser2 15704 serf0 15729 iseraltlem2 15731 iseralt 15733 fsump1 15804 fsump1i 15817 fsumparts 15854 cvgcmp 15864 isum1p 15889 isumsup2 15894 climcndslem1 15897 climcndslem2 15898 climcnds 15899 cvgrat 15931 mertenslem1 15932 clim2prod 15936 clim2div 15937 ntrivcvgfvn0 15947 fprodntriv 15990 fprodp1 16017 fprodabs 16022 binomfallfaclem2 16088 pcfac 16946 gsumsplit1r 18725 gsumprval 18726 telgsumfzslem 20030 telgsumfzs 20031 dvply2g 26344 dvply2gOLD 26345 aaliou3lem2 26403 ppinprm 27213 chtnprm 27215 ppiublem1 27264 chtublem 27273 chtub 27274 bposlem6 27351 pntlemf 27667 ostth2lem2 27696 clwwlkvbij 30145 fzsplit3 32799 esumcvg 34050 sseqf 34357 gsumnunsn 34518 signstfvp 34548 iprodefisumlem 35702 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem8 37588 poimirlem9 37589 poimirlem12 37592 poimirlem13 37593 poimirlem14 37594 poimirlem15 37595 poimirlem16 37596 poimirlem17 37597 poimirlem18 37598 poimirlem19 37599 poimirlem20 37600 poimirlem21 37601 poimirlem22 37602 poimirlem23 37603 poimirlem24 37604 poimirlem26 37606 poimirlem27 37607 poimirlem31 37611 poimirlem32 37612 sdclem2 37702 fdc 37705 mettrifi 37717 bfplem2 37783 rexrabdioph 42750 monotuz 42898 wallispilem1 45986 dirkertrigeqlem2 46020 sge0p1 46335 carageniuncllem1 46442 iccpartres 47292 iccelpart 47307 fmtno4prm 47449 |
Copyright terms: Public domain | W3C validator |