Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
2 | peano2z 12370 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
4 | zre 12332 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 12332 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | letrp1 11828 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
7 | 5, 6 | syl3an2 1163 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
8 | 4, 7 | syl3an1 1162 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
9 | 1, 3, 8 | 3jca 1127 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
10 | eluz2 12597 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
11 | eluz2 12597 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 ℝcr 10879 1c1 10881 + caddc 10883 ≤ cle 11019 ℤcz 12328 ℤ≥cuz 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 |
This theorem is referenced by: peano2uzs 12651 peano2uzr 12652 uzaddcl 12653 fzsplit 13291 fzssp1 13308 fzsuc 13312 fzpred 13313 fzp1ss 13316 fzp1elp1 13318 fztp 13321 fzneuz 13346 fzosplitsnm1 13471 fzofzp1 13493 fzosplitsn 13504 fzosplitpr 13505 fzostep1 13512 om2uzuzi 13678 uzrdgsuci 13689 fzen2 13698 fzfi 13701 seqsplit 13765 seqf1olem1 13771 seqf1olem2 13772 seqz 13780 faclbnd3 14015 bcm1k 14038 seqcoll 14187 seqcoll2 14188 swrds1 14388 pfxccatpfx2 14459 clim2ser 15375 clim2ser2 15376 serf0 15401 iseraltlem2 15403 iseralt 15405 fsump1 15477 fsump1i 15490 fsumparts 15527 cvgcmp 15537 isum1p 15562 isumsup2 15567 climcndslem1 15570 climcndslem2 15571 climcnds 15572 cvgrat 15604 mertenslem1 15605 clim2prod 15609 clim2div 15610 ntrivcvgfvn0 15620 fprodntriv 15661 fprodp1 15688 fprodabs 15693 binomfallfaclem2 15759 pcfac 16609 gsumsplit1r 18380 gsumprval 18381 telgsumfzslem 19598 telgsumfzs 19599 dvply2g 25454 aaliou3lem2 25512 ppinprm 26310 chtnprm 26312 ppiublem1 26359 chtublem 26368 chtub 26369 bposlem6 26446 pntlemf 26762 ostth2lem2 26791 clwwlkvbij 28486 fzsplit3 31124 esumcvg 32063 sseqf 32368 gsumnunsn 32529 signstfvp 32559 iprodefisumlem 33715 poimirlem1 35787 poimirlem2 35788 poimirlem3 35789 poimirlem4 35790 poimirlem6 35792 poimirlem7 35793 poimirlem8 35794 poimirlem9 35795 poimirlem12 35798 poimirlem13 35799 poimirlem14 35800 poimirlem15 35801 poimirlem16 35802 poimirlem17 35803 poimirlem18 35804 poimirlem19 35805 poimirlem20 35806 poimirlem21 35807 poimirlem22 35808 poimirlem23 35809 poimirlem24 35810 poimirlem26 35812 poimirlem27 35813 poimirlem31 35817 poimirlem32 35818 sdclem2 35909 fdc 35912 mettrifi 35924 bfplem2 35990 rexrabdioph 40623 monotuz 40770 wallispilem1 43613 dirkertrigeqlem2 43647 sge0p1 43959 carageniuncllem1 44066 iccpartres 44881 iccelpart 44896 fmtno4prm 45038 |
Copyright terms: Public domain | W3C validator |