| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
| 2 | peano2z 12513 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
| 4 | zre 12472 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 12472 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | letrp1 11965 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
| 7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
| 10 | eluz2 12738 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 11 | eluz2 12738 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: peano2uzs 12800 peano2uzr 12801 uzaddcl 12802 fzsplit 13450 fzssp1 13467 fzsuc 13471 fzpred 13472 fzp1ss 13475 fzp1elp1 13477 fztp 13480 fzdif1 13505 fzneuz 13508 fzosplitsnm1 13640 fzofzp1 13664 fzosplitsn 13676 fzosplitpr 13677 fzostep1 13686 om2uzuzi 13856 uzrdgsuci 13867 fzen2 13876 fzfi 13879 seqsplit 13942 seqf1olem1 13948 seqf1olem2 13949 seqz 13957 faclbnd3 14199 bcm1k 14222 seqcoll 14371 seqcoll2 14372 swrds1 14574 pfxccatpfx2 14644 clim2ser 15562 clim2ser2 15563 serf0 15588 iseraltlem2 15590 iseralt 15592 fsump1 15663 fsump1i 15676 fsumparts 15713 cvgcmp 15723 isum1p 15748 isumsup2 15753 climcndslem1 15756 climcndslem2 15757 climcnds 15758 cvgrat 15790 mertenslem1 15791 clim2prod 15795 clim2div 15796 ntrivcvgfvn0 15806 fprodntriv 15849 fprodp1 15876 fprodabs 15881 binomfallfaclem2 15947 pcfac 16811 gsumsplit1r 18595 gsumprval 18596 telgsumfzslem 19901 telgsumfzs 19902 dvply2g 26220 dvply2gOLD 26221 aaliou3lem2 26279 ppinprm 27090 chtnprm 27092 ppiublem1 27141 chtublem 27150 chtub 27151 bposlem6 27228 pntlemf 27544 ostth2lem2 27573 clwwlkvbij 30091 fzsplit3 32774 esumcvg 34097 sseqf 34403 gsumnunsn 34552 signstfvp 34582 iprodefisumlem 35782 poimirlem1 37667 poimirlem2 37668 poimirlem3 37669 poimirlem4 37670 poimirlem6 37672 poimirlem7 37673 poimirlem8 37674 poimirlem9 37675 poimirlem12 37678 poimirlem13 37679 poimirlem14 37680 poimirlem15 37681 poimirlem16 37682 poimirlem17 37683 poimirlem18 37684 poimirlem19 37685 poimirlem20 37686 poimirlem21 37687 poimirlem22 37688 poimirlem23 37689 poimirlem24 37690 poimirlem26 37692 poimirlem27 37693 poimirlem31 37697 poimirlem32 37698 sdclem2 37788 fdc 37791 mettrifi 37803 bfplem2 37869 rexrabdioph 42833 monotuz 42980 wallispilem1 46109 dirkertrigeqlem2 46143 sge0p1 46458 carageniuncllem1 46565 iccpartres 47455 iccelpart 47470 fmtno4prm 47612 |
| Copyright terms: Public domain | W3C validator |