| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
| 2 | peano2z 12519 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
| 4 | zre 12479 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 12479 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | letrp1 11972 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
| 7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
| 10 | eluz2 12744 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 11 | eluz2 12744 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 1c1 11014 + caddc 11016 ≤ cle 11154 ℤcz 12475 ℤ≥cuz 12738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 |
| This theorem is referenced by: peano2uzs 12802 peano2uzr 12803 uzaddcl 12804 fzsplit 13452 fzssp1 13469 fzsuc 13473 fzpred 13474 fzp1ss 13477 fzp1elp1 13479 fztp 13482 fzdif1 13507 fzneuz 13510 fzosplitsnm1 13642 fzofzp1 13666 fzosplitsn 13678 fzosplitpr 13679 fzostep1 13688 om2uzuzi 13858 uzrdgsuci 13869 fzen2 13878 fzfi 13881 seqsplit 13944 seqf1olem1 13950 seqf1olem2 13951 seqz 13959 faclbnd3 14201 bcm1k 14224 seqcoll 14373 seqcoll2 14374 swrds1 14576 pfxccatpfx2 14646 clim2ser 15564 clim2ser2 15565 serf0 15590 iseraltlem2 15592 iseralt 15594 fsump1 15665 fsump1i 15678 fsumparts 15715 cvgcmp 15725 isum1p 15750 isumsup2 15755 climcndslem1 15758 climcndslem2 15759 climcnds 15760 cvgrat 15792 mertenslem1 15793 clim2prod 15797 clim2div 15798 ntrivcvgfvn0 15808 fprodntriv 15851 fprodp1 15878 fprodabs 15883 binomfallfaclem2 15949 pcfac 16813 gsumsplit1r 18597 gsumprval 18598 telgsumfzslem 19902 telgsumfzs 19903 dvply2g 26220 dvply2gOLD 26221 aaliou3lem2 26279 ppinprm 27090 chtnprm 27092 ppiublem1 27141 chtublem 27150 chtub 27151 bposlem6 27228 pntlemf 27544 ostth2lem2 27573 clwwlkvbij 30095 fzsplit3 32780 esumcvg 34120 sseqf 34426 gsumnunsn 34575 signstfvp 34605 iprodefisumlem 35805 poimirlem1 37682 poimirlem2 37683 poimirlem3 37684 poimirlem4 37685 poimirlem6 37687 poimirlem7 37688 poimirlem8 37689 poimirlem9 37690 poimirlem12 37693 poimirlem13 37694 poimirlem14 37695 poimirlem15 37696 poimirlem16 37697 poimirlem17 37698 poimirlem18 37699 poimirlem19 37700 poimirlem20 37701 poimirlem21 37702 poimirlem22 37703 poimirlem23 37704 poimirlem24 37705 poimirlem26 37707 poimirlem27 37708 poimirlem31 37712 poimirlem32 37713 sdclem2 37803 fdc 37806 mettrifi 37818 bfplem2 37884 rexrabdioph 42912 monotuz 43059 wallispilem1 46188 dirkertrigeqlem2 46222 sge0p1 46537 carageniuncllem1 46644 iccpartres 47543 iccelpart 47558 fmtno4prm 47700 |
| Copyright terms: Public domain | W3C validator |