| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version | ||
| Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
| 2 | peano2z 12574 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
| 4 | zre 12533 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | zre 12533 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | letrp1 12026 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
| 7 | 5, 6 | syl3an2 1164 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 8 | 4, 7 | syl3an1 1163 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
| 9 | 1, 3, 8 | 3jca 1128 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
| 10 | eluz2 12799 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 11 | eluz2 12799 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
| 12 | 9, 10, 11 | 3imtr4i 292 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 ≤ cle 11209 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: peano2uzs 12861 peano2uzr 12862 uzaddcl 12863 fzsplit 13511 fzssp1 13528 fzsuc 13532 fzpred 13533 fzp1ss 13536 fzp1elp1 13538 fztp 13541 fzdif1 13566 fzneuz 13569 fzosplitsnm1 13701 fzofzp1 13725 fzosplitsn 13736 fzosplitpr 13737 fzostep1 13744 om2uzuzi 13914 uzrdgsuci 13925 fzen2 13934 fzfi 13937 seqsplit 14000 seqf1olem1 14006 seqf1olem2 14007 seqz 14015 faclbnd3 14257 bcm1k 14280 seqcoll 14429 seqcoll2 14430 swrds1 14631 pfxccatpfx2 14702 clim2ser 15621 clim2ser2 15622 serf0 15647 iseraltlem2 15649 iseralt 15651 fsump1 15722 fsump1i 15735 fsumparts 15772 cvgcmp 15782 isum1p 15807 isumsup2 15812 climcndslem1 15815 climcndslem2 15816 climcnds 15817 cvgrat 15849 mertenslem1 15850 clim2prod 15854 clim2div 15855 ntrivcvgfvn0 15865 fprodntriv 15908 fprodp1 15935 fprodabs 15940 binomfallfaclem2 16006 pcfac 16870 gsumsplit1r 18614 gsumprval 18615 telgsumfzslem 19918 telgsumfzs 19919 dvply2g 26192 dvply2gOLD 26193 aaliou3lem2 26251 ppinprm 27062 chtnprm 27064 ppiublem1 27113 chtublem 27122 chtub 27123 bposlem6 27200 pntlemf 27516 ostth2lem2 27545 clwwlkvbij 30042 fzsplit3 32716 esumcvg 34076 sseqf 34383 gsumnunsn 34532 signstfvp 34562 iprodefisumlem 35727 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem8 37622 poimirlem9 37623 poimirlem12 37626 poimirlem13 37627 poimirlem14 37628 poimirlem15 37629 poimirlem16 37630 poimirlem17 37631 poimirlem18 37632 poimirlem19 37633 poimirlem20 37634 poimirlem21 37635 poimirlem22 37636 poimirlem23 37637 poimirlem24 37638 poimirlem26 37640 poimirlem27 37641 poimirlem31 37645 poimirlem32 37646 sdclem2 37736 fdc 37739 mettrifi 37751 bfplem2 37817 rexrabdioph 42782 monotuz 42930 wallispilem1 46063 dirkertrigeqlem2 46097 sge0p1 46412 carageniuncllem1 46519 iccpartres 47416 iccelpart 47431 fmtno4prm 47573 |
| Copyright terms: Public domain | W3C validator |