Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2uz | Structured version Visualization version GIF version |
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
peano2uz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℤ) | |
2 | peano2z 12291 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
3 | 2 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑁 + 1) ∈ ℤ) |
4 | zre 12253 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 12253 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | letrp1 11749 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) | |
7 | 5, 6 | syl3an2 1162 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
8 | 4, 7 | syl3an1 1161 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝑀 ≤ (𝑁 + 1)) |
9 | 1, 3, 8 | 3jca 1126 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) |
10 | eluz2 12517 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
11 | eluz2 12517 | . 2 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 + 1))) | |
12 | 9, 10, 11 | 3imtr4i 291 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: peano2uzs 12571 peano2uzr 12572 uzaddcl 12573 fzsplit 13211 fzssp1 13228 fzsuc 13232 fzpred 13233 fzp1ss 13236 fzp1elp1 13238 fztp 13241 fzneuz 13266 fzosplitsnm1 13390 fzofzp1 13412 fzosplitsn 13423 fzosplitpr 13424 fzostep1 13431 om2uzuzi 13597 uzrdgsuci 13608 fzen2 13617 fzfi 13620 seqsplit 13684 seqf1olem1 13690 seqf1olem2 13691 seqz 13699 faclbnd3 13934 bcm1k 13957 seqcoll 14106 seqcoll2 14107 swrds1 14307 pfxccatpfx2 14378 clim2ser 15294 clim2ser2 15295 serf0 15320 iseraltlem2 15322 iseralt 15324 fsump1 15396 fsump1i 15409 fsumparts 15446 cvgcmp 15456 isum1p 15481 isumsup2 15486 climcndslem1 15489 climcndslem2 15490 climcnds 15491 cvgrat 15523 mertenslem1 15524 clim2prod 15528 clim2div 15529 ntrivcvgfvn0 15539 fprodntriv 15580 fprodp1 15607 fprodabs 15612 binomfallfaclem2 15678 pcfac 16528 gsumsplit1r 18286 gsumprval 18287 telgsumfzslem 19504 telgsumfzs 19505 dvply2g 25350 aaliou3lem2 25408 ppinprm 26206 chtnprm 26208 ppiublem1 26255 chtublem 26264 chtub 26265 bposlem6 26342 pntlemf 26658 ostth2lem2 26687 clwwlkvbij 28378 fzsplit3 31017 esumcvg 31954 sseqf 32259 gsumnunsn 32420 signstfvp 32450 iprodefisumlem 33612 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem8 35712 poimirlem9 35713 poimirlem12 35716 poimirlem13 35717 poimirlem14 35718 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem18 35722 poimirlem19 35723 poimirlem20 35724 poimirlem21 35725 poimirlem22 35726 poimirlem23 35727 poimirlem24 35728 poimirlem26 35730 poimirlem27 35731 poimirlem31 35735 poimirlem32 35736 sdclem2 35827 fdc 35830 mettrifi 35842 bfplem2 35908 rexrabdioph 40532 monotuz 40679 wallispilem1 43496 dirkertrigeqlem2 43530 sge0p1 43842 carageniuncllem1 43949 iccpartres 44758 iccelpart 44773 fmtno4prm 44915 |
Copyright terms: Public domain | W3C validator |