|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > grpsubrcan | Structured version Visualization version GIF version | ||
| Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) | 
| grpsubcl.m | ⊢ − = (-g‘𝐺) | 
| Ref | Expression | 
|---|---|
| grpsubrcan | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ 𝑋 = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2737 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | grpsubcl.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubval 19003 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) | 
| 6 | 5 | 3adant2 1132 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) | 
| 7 | 1, 2, 3, 4 | grpsubval 19003 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) | 
| 8 | 7 | 3adant1 1131 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) | 
| 9 | 6, 8 | eqeq12d 2753 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)))) | 
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)))) | 
| 11 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
| 12 | simpr1 1195 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 13 | simpr2 1196 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 14 | 1, 3 | grpinvcl 19005 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) | 
| 15 | 14 | 3ad2antr3 1191 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) | 
| 16 | 1, 2 | grprcan 18991 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)) ↔ 𝑋 = 𝑌)) | 
| 17 | 11, 12, 13, 15, 16 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)) ↔ 𝑋 = 𝑌)) | 
| 18 | 10, 17 | bitrd 279 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ 𝑋 = 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 Grpcgrp 18951 invgcminusg 18952 -gcsg 18953 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 | 
| This theorem is referenced by: abladdsub4 19829 ogrpsublt 33098 | 
| Copyright terms: Public domain | W3C validator |