MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubrcan Structured version   Visualization version   GIF version

Theorem grpsubrcan 19009
Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubrcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grpsubrcan
StepHypRef Expression
1 grpsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2736 . . . . . 6 (+g𝐺) = (+g𝐺)
3 eqid 2736 . . . . . 6 (invg𝐺) = (invg𝐺)
4 grpsubcl.m . . . . . 6 = (-g𝐺)
51, 2, 3, 4grpsubval 18973 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
653adant2 1131 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
71, 2, 3, 4grpsubval 18973 . . . . 5 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
873adant1 1130 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
96, 8eqeq12d 2752 . . 3 ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍))))
109adantl 481 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍))))
11 simpl 482 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
12 simpr1 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
13 simpr2 1196 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
141, 3grpinvcl 18975 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
15143ad2antr3 1191 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
161, 2grprcan 18961 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)) ↔ 𝑋 = 𝑌))
1711, 12, 13, 15, 16syl13anc 1374 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)) ↔ 𝑋 = 𝑌))
1810, 17bitrd 279 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926
This theorem is referenced by:  abladdsub4  19797  ogrpsublt  33094
  Copyright terms: Public domain W3C validator