Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubrcan | Structured version Visualization version GIF version |
Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubrcan | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2739 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2739 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | grpsubcl.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubval 18606 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
6 | 5 | 3adant2 1129 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
7 | 1, 2, 3, 4 | grpsubval 18606 | . . . . 5 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
8 | 7 | 3adant1 1128 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
9 | 6, 8 | eqeq12d 2755 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)))) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)))) |
11 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
12 | simpr1 1192 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
13 | simpr2 1193 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
14 | 1, 3 | grpinvcl 18608 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
15 | 14 | 3ad2antr3 1188 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
16 | 1, 2 | grprcan 18594 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)) ↔ 𝑋 = 𝑌)) |
17 | 11, 12, 13, 15, 16 | syl13anc 1370 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍)) ↔ 𝑋 = 𝑌)) |
18 | 10, 17 | bitrd 278 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) = (𝑌 − 𝑍) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Grpcgrp 18558 invgcminusg 18559 -gcsg 18560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 |
This theorem is referenced by: abladdsub4 19396 ogrpsublt 31326 |
Copyright terms: Public domain | W3C validator |