MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubrcan Structured version   Visualization version   GIF version

Theorem grpsubrcan 18900
Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubrcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))

Proof of Theorem grpsubrcan
StepHypRef Expression
1 grpsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2732 . . . . . 6 (+g𝐺) = (+g𝐺)
3 eqid 2732 . . . . . 6 (invg𝐺) = (invg𝐺)
4 grpsubcl.m . . . . . 6 = (-g𝐺)
51, 2, 3, 4grpsubval 18866 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
653adant2 1131 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
71, 2, 3, 4grpsubval 18866 . . . . 5 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
873adant1 1130 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
96, 8eqeq12d 2748 . . 3 ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍))))
109adantl 482 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍))))
11 simpl 483 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
12 simpr1 1194 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
13 simpr2 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
141, 3grpinvcl 18868 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
15143ad2antr3 1190 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
161, 2grprcan 18854 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)) ↔ 𝑋 = 𝑌))
1711, 12, 13, 15, 16syl13anc 1372 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g𝐺)((invg𝐺)‘𝑍)) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)) ↔ 𝑋 = 𝑌))
1810, 17bitrd 278 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815  invgcminusg 18816  -gcsg 18817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820
This theorem is referenced by:  abladdsub4  19673  ogrpsublt  32226
  Copyright terms: Public domain W3C validator