Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimbr Structured version   Visualization version   GIF version

Theorem xlimbr 40801
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimbr.k 𝑘𝐹
xlimbr.m (𝜑𝑀 ∈ ℤ)
xlimbr.z 𝑍 = (ℤ𝑀)
xlimbr.f (𝜑𝐹:𝑍⟶ℝ*)
xlimbr.j 𝐽 = (ordTop‘ ≤ )
Assertion
Ref Expression
xlimbr (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑗,𝑀,𝑢   𝑢,𝑃   𝑗,𝑍,𝑘   𝑢,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑘)   𝑍(𝑢)

Proof of Theorem xlimbr
StepHypRef Expression
1 df-xlim 40793 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
21breqi 4853 . . 3 (𝐹~~>*𝑃𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃)
32a1i 11 . 2 (𝜑 → (𝐹~~>*𝑃𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃))
4 xlimbr.k . . 3 𝑘𝐹
5 letopon 21342 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
65a1i 11 . . 3 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
74, 6lmbr3 40727 . 2 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃 ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
8 simpr2 1251 . . . 4 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝑃 ∈ ℝ*)
9 xlimbr.j . . . . . . . 8 𝐽 = (ordTop‘ ≤ )
109eqcomi 2812 . . . . . . 7 (ordTop‘ ≤ ) = 𝐽
1110raleqi 3329 . . . . . 6 (∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
12 xlimbr.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 xlimbr.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1413rexuz3 14433 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1514bicomd 215 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1615imbi2d 332 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1716biimpd 221 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1817ralimdv 3148 . . . . . . . 8 (𝑀 ∈ ℤ → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1912, 18syl 17 . . . . . . 7 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2019imp 396 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2111, 20sylan2b 588 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
22213ad2antr3 1242 . . . 4 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
238, 22jca 508 . . 3 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
24 cnex 10309 . . . . . . 7 ℂ ∈ V
2524a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
266elfvexd 6450 . . . . . 6 (𝜑 → ℝ* ∈ V)
2713uzsscn2 40455 . . . . . . 7 𝑍 ⊆ ℂ
2827a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℂ)
29 xlimbr.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
3025, 26, 28, 29fpmd 40234 . . . . 5 (𝜑𝐹 ∈ (ℝ*pm ℂ))
3130adantr 473 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝐹 ∈ (ℝ*pm ℂ))
32 simprl 788 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝑃 ∈ ℝ*)
3316biimprd 240 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3433ralimdv 3148 . . . . . . . 8 (𝑀 ∈ ℤ → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3512, 34syl 17 . . . . . . 7 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3635imp 396 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
379raleqi 3329 . . . . . 6 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3836, 37sylib 210 . . . . 5 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3938adantrl 708 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
4031, 32, 393jca 1159 . . 3 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
4123, 40impbida 836 . 2 (𝜑 → ((𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
423, 7, 413bitrd 297 1 (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wnfc 2932  wral 3093  wrex 3094  Vcvv 3389  wss 3773   class class class wbr 4847  dom cdm 5316  wf 6101  cfv 6105  (class class class)co 6882  pm cpm 8100  cc 10226  *cxr 10366  cle 10368  cz 11670  cuz 11934  ordTopcordt 16478  TopOnctopon 21047  𝑡clm 21363  ~~>*clsxlim 40792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-addrcl 10289  ax-rnegex 10299  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-nel 3079  df-ral 3098  df-rex 3099  df-reu 3100  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-int 4672  df-iun 4716  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-om 7304  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-pm 8102  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-fi 8563  df-pnf 10369  df-mnf 10370  df-xr 10371  df-ltxr 10372  df-le 10373  df-neg 10563  df-z 11671  df-uz 11935  df-topgen 16423  df-ordt 16480  df-ps 17519  df-tsr 17520  df-top 21031  df-topon 21048  df-bases 21083  df-lm 21366  df-xlim 40793
This theorem is referenced by:  xlimxrre  40805
  Copyright terms: Public domain W3C validator