Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimbr Structured version   Visualization version   GIF version

Theorem xlimbr 45818
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimbr.k 𝑘𝐹
xlimbr.m (𝜑𝑀 ∈ ℤ)
xlimbr.z 𝑍 = (ℤ𝑀)
xlimbr.f (𝜑𝐹:𝑍⟶ℝ*)
xlimbr.j 𝐽 = (ordTop‘ ≤ )
Assertion
Ref Expression
xlimbr (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑗,𝑀,𝑢   𝑢,𝑃   𝑗,𝑍,𝑘   𝑢,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑘)   𝑍(𝑢)

Proof of Theorem xlimbr
StepHypRef Expression
1 df-xlim 45810 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
21breqi 5108 . . 3 (𝐹~~>*𝑃𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃)
32a1i 11 . 2 (𝜑 → (𝐹~~>*𝑃𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃))
4 xlimbr.k . . 3 𝑘𝐹
5 letopon 23125 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
65a1i 11 . . 3 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
74, 6lmbr3 45738 . 2 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃 ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
8 simpr2 1196 . . . 4 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝑃 ∈ ℝ*)
9 xlimbr.j . . . . . . . 8 𝐽 = (ordTop‘ ≤ )
109eqcomi 2738 . . . . . . 7 (ordTop‘ ≤ ) = 𝐽
1110raleqi 3294 . . . . . 6 (∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
12 xlimbr.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 xlimbr.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1413rexuz3 15291 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1514bicomd 223 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1615imbi2d 340 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1716biimpd 229 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1817ralimdv 3147 . . . . . . . 8 (𝑀 ∈ ℤ → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1912, 18syl 17 . . . . . . 7 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2019imp 406 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2111, 20sylan2b 594 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
22213ad2antr3 1191 . . . 4 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
238, 22jca 511 . . 3 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
24 cnex 11125 . . . . . . 7 ℂ ∈ V
2524a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
266elfvexd 6879 . . . . . 6 (𝜑 → ℝ* ∈ V)
2713uzsscn2 45466 . . . . . . 7 𝑍 ⊆ ℂ
2827a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℂ)
29 xlimbr.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
3025, 26, 28, 29fpmd 45250 . . . . 5 (𝜑𝐹 ∈ (ℝ*pm ℂ))
3130adantr 480 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝐹 ∈ (ℝ*pm ℂ))
32 simprl 770 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝑃 ∈ ℝ*)
3316biimprd 248 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3433ralimdv 3147 . . . . . . . 8 (𝑀 ∈ ℤ → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3512, 34syl 17 . . . . . . 7 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3635imp 406 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
379raleqi 3294 . . . . . 6 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3836, 37sylib 218 . . . . 5 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3938adantrl 716 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
4031, 32, 393jca 1128 . . 3 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
4123, 40impbida 800 . 2 (𝜑 → ((𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
423, 7, 413bitrd 305 1 (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  *cxr 11183  cle 11185  cz 12505  cuz 12769  ordTopcordt 17438  TopOnctopon 22830  𝑡clm 23146  ~~>*clsxlim 45809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-addrcl 11105  ax-rnegex 11115  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770  df-topgen 17382  df-ordt 17440  df-ps 18507  df-tsr 18508  df-top 22814  df-topon 22831  df-bases 22866  df-lm 23149  df-xlim 45810
This theorem is referenced by:  xlimxrre  45822
  Copyright terms: Public domain W3C validator