Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimbr Structured version   Visualization version   GIF version

Theorem xlimbr 42101
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimbr.k 𝑘𝐹
xlimbr.m (𝜑𝑀 ∈ ℤ)
xlimbr.z 𝑍 = (ℤ𝑀)
xlimbr.f (𝜑𝐹:𝑍⟶ℝ*)
xlimbr.j 𝐽 = (ordTop‘ ≤ )
Assertion
Ref Expression
xlimbr (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑗,𝑀,𝑢   𝑢,𝑃   𝑗,𝑍,𝑘   𝑢,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑘)   𝑍(𝑢)

Proof of Theorem xlimbr
StepHypRef Expression
1 df-xlim 42093 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
21breqi 5064 . . 3 (𝐹~~>*𝑃𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃)
32a1i 11 . 2 (𝜑 → (𝐹~~>*𝑃𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃))
4 xlimbr.k . . 3 𝑘𝐹
5 letopon 21807 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
65a1i 11 . . 3 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
74, 6lmbr3 42021 . 2 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝑃 ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
8 simpr2 1191 . . . 4 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝑃 ∈ ℝ*)
9 xlimbr.j . . . . . . . 8 𝐽 = (ordTop‘ ≤ )
109eqcomi 2830 . . . . . . 7 (ordTop‘ ≤ ) = 𝐽
1110raleqi 3413 . . . . . 6 (∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
12 xlimbr.m . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
13 xlimbr.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
1413rexuz3 14702 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1514bicomd 225 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1615imbi2d 343 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1716biimpd 231 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1817ralimdv 3178 . . . . . . . 8 (𝑀 ∈ ℤ → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1912, 18syl 17 . . . . . . 7 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2019imp 409 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2111, 20sylan2b 595 . . . . 5 ((𝜑 ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
22213ad2antr3 1186 . . . 4 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
238, 22jca 514 . . 3 ((𝜑 ∧ (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
24 cnex 10612 . . . . . . 7 ℂ ∈ V
2524a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
266elfvexd 6698 . . . . . 6 (𝜑 → ℝ* ∈ V)
2713uzsscn2 41747 . . . . . . 7 𝑍 ⊆ ℂ
2827a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℂ)
29 xlimbr.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
3025, 26, 28, 29fpmd 41531 . . . . 5 (𝜑𝐹 ∈ (ℝ*pm ℂ))
3130adantr 483 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝐹 ∈ (ℝ*pm ℂ))
32 simprl 769 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → 𝑃 ∈ ℝ*)
3316biimprd 250 . . . . . . . . 9 (𝑀 ∈ ℤ → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3433ralimdv 3178 . . . . . . . 8 (𝑀 ∈ ℤ → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3512, 34syl 17 . . . . . . 7 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3635imp 409 . . . . . 6 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
379raleqi 3413 . . . . . 6 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3836, 37sylib 220 . . . . 5 ((𝜑 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3938adantrl 714 . . . 4 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
4031, 32, 393jca 1124 . . 3 ((𝜑 ∧ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) → (𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
4123, 40impbida 799 . 2 (𝜑 → ((𝐹 ∈ (ℝ*pm ℂ) ∧ 𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
423, 7, 413bitrd 307 1 (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wnfc 2961  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  dom cdm 5549  wf 6345  cfv 6349  (class class class)co 7150  pm cpm 8401  cc 10529  *cxr 10668  cle 10670  cz 11975  cuz 12237  ordTopcordt 16766  TopOnctopon 21512  𝑡clm 21828  ~~>*clsxlim 42092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-addrcl 10592  ax-rnegex 10602  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-neg 10867  df-z 11976  df-uz 12238  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-topon 21513  df-bases 21548  df-lm 21831  df-xlim 42093
This theorem is referenced by:  xlimxrre  42105
  Copyright terms: Public domain W3C validator