Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimbr Structured version   Visualization version   GIF version

Theorem xlimbr 44543
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimbr.k β„²π‘˜πΉ
xlimbr.m (πœ‘ β†’ 𝑀 ∈ β„€)
xlimbr.z 𝑍 = (β„€β‰₯β€˜π‘€)
xlimbr.f (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
xlimbr.j 𝐽 = (ordTopβ€˜ ≀ )
Assertion
Ref Expression
xlimbr (πœ‘ β†’ (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
Distinct variable groups:   𝑗,𝐹,𝑒   𝑒,𝐽   𝑗,𝑀,𝑒   𝑒,𝑃   𝑗,𝑍,π‘˜   𝑒,π‘˜
Allowed substitution hints:   πœ‘(𝑒,𝑗,π‘˜)   𝑃(𝑗,π‘˜)   𝐹(π‘˜)   𝐽(𝑗,π‘˜)   𝑀(π‘˜)   𝑍(𝑒)

Proof of Theorem xlimbr
StepHypRef Expression
1 df-xlim 44535 . . . 4 ~~>* = (β‡π‘‘β€˜(ordTopβ€˜ ≀ ))
21breqi 5155 . . 3 (𝐹~~>*𝑃 ↔ 𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))𝑃)
32a1i 11 . 2 (πœ‘ β†’ (𝐹~~>*𝑃 ↔ 𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))𝑃))
4 xlimbr.k . . 3 β„²π‘˜πΉ
5 letopon 22709 . . . 4 (ordTopβ€˜ ≀ ) ∈ (TopOnβ€˜β„*)
65a1i 11 . . 3 (πœ‘ β†’ (ordTopβ€˜ ≀ ) ∈ (TopOnβ€˜β„*))
74, 6lmbr3 44463 . 2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))𝑃 ↔ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ 𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
8 simpr2 1196 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ 𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ 𝑃 ∈ ℝ*)
9 xlimbr.j . . . . . . . 8 𝐽 = (ordTopβ€˜ ≀ )
109eqcomi 2742 . . . . . . 7 (ordTopβ€˜ ≀ ) = 𝐽
1110raleqi 3324 . . . . . 6 (βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) ↔ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
12 xlimbr.m . . . . . . . 8 (πœ‘ β†’ 𝑀 ∈ β„€)
13 xlimbr.z . . . . . . . . . . . . 13 𝑍 = (β„€β‰₯β€˜π‘€)
1413rexuz3 15295 . . . . . . . . . . . 12 (𝑀 ∈ β„€ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1514bicomd 222 . . . . . . . . . . 11 (𝑀 ∈ β„€ β†’ (βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1615imbi2d 341 . . . . . . . . . 10 (𝑀 ∈ β„€ β†’ ((𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) ↔ (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
1716biimpd 228 . . . . . . . . 9 (𝑀 ∈ β„€ β†’ ((𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) β†’ (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
1817ralimdv 3170 . . . . . . . 8 (𝑀 ∈ β„€ β†’ (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
1912, 18syl 17 . . . . . . 7 (πœ‘ β†’ (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2019imp 408 . . . . . 6 ((πœ‘ ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
2111, 20sylan2b 595 . . . . 5 ((πœ‘ ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
22213ad2antr3 1191 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ 𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
238, 22jca 513 . . 3 ((πœ‘ ∧ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ 𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
24 cnex 11191 . . . . . . 7 β„‚ ∈ V
2524a1i 11 . . . . . 6 (πœ‘ β†’ β„‚ ∈ V)
266elfvexd 6931 . . . . . 6 (πœ‘ β†’ ℝ* ∈ V)
2713uzsscn2 44188 . . . . . . 7 𝑍 βŠ† β„‚
2827a1i 11 . . . . . 6 (πœ‘ β†’ 𝑍 βŠ† β„‚)
29 xlimbr.f . . . . . 6 (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
3025, 26, 28, 29fpmd 43968 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (ℝ* ↑pm β„‚))
3130adantr 482 . . . 4 ((πœ‘ ∧ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ 𝐹 ∈ (ℝ* ↑pm β„‚))
32 simprl 770 . . . 4 ((πœ‘ ∧ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ 𝑃 ∈ ℝ*)
3316biimprd 247 . . . . . . . . 9 (𝑀 ∈ β„€ β†’ ((𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) β†’ (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
3433ralimdv 3170 . . . . . . . 8 (𝑀 ∈ β„€ β†’ (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
3512, 34syl 17 . . . . . . 7 (πœ‘ β†’ (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
3635imp 408 . . . . . 6 ((πœ‘ ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) β†’ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
379raleqi 3324 . . . . . 6 (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)) ↔ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
3836, 37sylib 217 . . . . 5 ((πœ‘ ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) β†’ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
3938adantrl 715 . . . 4 ((πœ‘ ∧ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
4031, 32, 393jca 1129 . . 3 ((πœ‘ ∧ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))) β†’ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ 𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
4123, 40impbida 800 . 2 (πœ‘ β†’ ((𝐹 ∈ (ℝ* ↑pm β„‚) ∧ 𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) ↔ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
423, 7, 413bitrd 305 1 (πœ‘ β†’ (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  β„²wnfc 2884  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3949   class class class wbr 5149  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑pm cpm 8821  β„‚cc 11108  β„*cxr 11247   ≀ cle 11249  β„€cz 12558  β„€β‰₯cuz 12822  ordTopcordt 17445  TopOnctopon 22412  β‡π‘‘clm 22730  ~~>*clsxlim 44534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-addrcl 11171  ax-rnegex 11181  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-1o 8466  df-er 8703  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fi 9406  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-neg 11447  df-z 12559  df-uz 12823  df-topgen 17389  df-ordt 17447  df-ps 18519  df-tsr 18520  df-top 22396  df-topon 22413  df-bases 22449  df-lm 22733  df-xlim 44535
This theorem is referenced by:  xlimxrre  44547
  Copyright terms: Public domain W3C validator