MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjjdir Structured version   Visualization version   GIF version

Theorem latjjdir 18450
Description: Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
latjass.b 𝐡 = (Baseβ€˜πΎ)
latjass.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
latjjdir ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ 𝑍)))

Proof of Theorem latjjdir
StepHypRef Expression
1 latjass.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 latjass.j . . . . 5 ∨ = (joinβ€˜πΎ)
31, 2latjidm 18420 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐡) β†’ (𝑍 ∨ 𝑍) = 𝑍)
433ad2antr3 1189 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑍 ∨ 𝑍) = 𝑍)
54oveq2d 7428 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ 𝑍)) = ((𝑋 ∨ π‘Œ) ∨ 𝑍))
6 simpl 482 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ 𝐾 ∈ Lat)
7 simpr1 1193 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
8 simpr2 1194 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
9 simpr3 1195 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ 𝑍 ∈ 𝐡)
101, 2latj4 18447 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ 𝑍)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ 𝑍)))
116, 7, 8, 9, 9, 10syl122anc 1378 . 2 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ (𝑍 ∨ 𝑍)) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ 𝑍)))
125, 11eqtr3d 2773 1 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ∨ π‘Œ) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (π‘Œ ∨ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  joincjn 18269  Latclat 18389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-proset 18253  df-poset 18271  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-lat 18390
This theorem is referenced by:  dalem38  38885  cdleme23b  39525
  Copyright terms: Public domain W3C validator