Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjjdir | Structured version Visualization version GIF version |
Description: Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.) |
Ref | Expression |
---|---|
latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
latjass.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjjdir | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latjass.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | latjidm 17750 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵) → (𝑍 ∨ 𝑍) = 𝑍) |
4 | 3 | 3ad2antr3 1187 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ∨ 𝑍) = 𝑍) |
5 | 4 | oveq2d 7166 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ 𝑍)) |
6 | simpl 486 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
7 | simpr1 1191 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
8 | simpr2 1192 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
9 | simpr3 1193 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
10 | 1, 2 | latj4 17777 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑍)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) |
11 | 6, 7, 8, 9, 9, 10 | syl122anc 1376 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑍)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) |
12 | 5, 11 | eqtr3d 2795 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 joincjn 17620 Latclat 17721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-proset 17604 df-poset 17622 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-lat 17722 |
This theorem is referenced by: dalem38 37286 cdleme23b 37926 |
Copyright terms: Public domain | W3C validator |