MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpomuldivass Structured version   Visualization version   GIF version

Theorem grpomuldivass 28488
Description: Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpomuldivass ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶)))

Proof of Theorem grpomuldivass
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
2 simpr2 1196 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 grpdivf.1 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2739 . . . . . 6 (inv‘𝐺) = (inv‘𝐺)
53, 4grpoinvcl 28471 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
653ad2antr3 1191 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
71, 2, 63jca 1129 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋))
83grpoass 28450 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶))))
97, 8syldan 594 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶))))
10 simpl 486 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ GrpOp)
113grpocl 28447 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
12113adant3r3 1185 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
13 simpr3 1197 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
14 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
153, 4, 14grpodivval 28482 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)))
1610, 12, 13, 15syl3anc 1372 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)))
173, 4, 14grpodivval 28482 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
18173adant3r1 1183 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
1918oveq2d 7198 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺(𝐵𝐷𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶))))
209, 16, 193eqtr4d 2784 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  ran crn 5536  cfv 6349  (class class class)co 7182  GrpOpcgr 28436  invcgn 28438   /𝑔 cgs 28439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-1st 7726  df-2nd 7727  df-grpo 28440  df-gid 28441  df-ginv 28442  df-gdiv 28443
This theorem is referenced by:  ablomuldiv  28499  ablodivdiv  28500  ablo4pnp  35693
  Copyright terms: Public domain W3C validator