MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpomuldivass Structured version   Visualization version   GIF version

Theorem grpomuldivass 30570
Description: Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpomuldivass ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶)))

Proof of Theorem grpomuldivass
StepHypRef Expression
1 simpr1 1193 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
2 simpr2 1194 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
3 grpdivf.1 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2735 . . . . . 6 (inv‘𝐺) = (inv‘𝐺)
53, 4grpoinvcl 30553 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
653ad2antr3 1189 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
71, 2, 63jca 1127 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋))
83grpoass 30532 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶))))
97, 8syldan 591 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶))))
10 simpl 482 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ GrpOp)
113grpocl 30529 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
12113adant3r3 1183 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
13 simpr3 1195 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
14 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
153, 4, 14grpodivval 30564 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)))
1610, 12, 13, 15syl3anc 1370 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐺𝐵)𝐺((inv‘𝐺)‘𝐶)))
173, 4, 14grpodivval 30564 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
18173adant3r1 1181 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
1918oveq2d 7447 . 2 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺(𝐵𝐷𝐶)) = (𝐴𝐺(𝐵𝐺((inv‘𝐺)‘𝐶))))
209, 16, 193eqtr4d 2785 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  ran crn 5690  cfv 6563  (class class class)co 7431  GrpOpcgr 30518  invcgn 30520   /𝑔 cgs 30521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525
This theorem is referenced by:  ablomuldiv  30581  ablodivdiv  30582  ablo4pnp  37867
  Copyright terms: Public domain W3C validator