Step | Hyp | Ref
| Expression |
1 | | imassrn 5969 |
. . . 4
⊢ (𝐹 “ 𝑆) ⊆ ran 𝐹 |
2 | | qustgp.h |
. . . . . . 7
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
3 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))) |
4 | | qustgpopn.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
5 | 4 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑋 = (Base‘𝐺)) |
6 | | qustgpopn.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) |
7 | | ovex 7288 |
. . . . . . 7
⊢ (𝐺 ~QG 𝑌) ∈ V |
8 | 7 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐺 ~QG 𝑌) ∈ V) |
9 | | simp1 1134 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐺 ∈ TopGrp) |
10 | 3, 5, 6, 8, 9 | quslem 17171 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐹:𝑋–onto→(𝑋 / (𝐺 ~QG 𝑌))) |
11 | | forn 6675 |
. . . . 5
⊢ (𝐹:𝑋–onto→(𝑋 / (𝐺 ~QG 𝑌)) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌))) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌))) |
13 | 1, 12 | sseqtrid 3969 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌))) |
14 | | eceq1 8494 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)) |
15 | 14 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑦 ∈ 𝑋 ↦ [𝑦](𝐺 ~QG 𝑌)) |
16 | 6, 15 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ [𝑦](𝐺 ~QG 𝑌)) |
17 | 16 | mptpreima 6130 |
. . . . . . 7
⊢ (◡𝐹 “ (𝐹 “ 𝑆)) = {𝑦 ∈ 𝑋 ∣ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆)} |
18 | 17 | rabeq2i 3412 |
. . . . . 6
⊢ (𝑦 ∈ (◡𝐹 “ (𝐹 “ 𝑆)) ↔ (𝑦 ∈ 𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆))) |
19 | 6 | funmpt2 6457 |
. . . . . . . . 9
⊢ Fun 𝐹 |
20 | | fvelima 6817 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆)) → ∃𝑧 ∈ 𝑆 (𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌)) |
21 | 19, 20 | mpan 686 |
. . . . . . . 8
⊢ ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆) → ∃𝑧 ∈ 𝑆 (𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌)) |
22 | | qustgpopn.j |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 = (TopOpen‘𝐺) |
23 | 22, 4 | tgptopon 23141 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
24 | 9, 23 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | | simp3 1136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) |
26 | | toponss 21984 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
27 | 24, 25, 26 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
29 | 28 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑋) |
30 | | eceq1 8494 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) |
31 | | ecexg 8460 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V) |
32 | 7, 31 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ [𝑧](𝐺 ~QG 𝑌) ∈ V |
33 | 30, 6, 32 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
34 | 29, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
35 | 34 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))) |
36 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ ([𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) |
37 | 35, 36 | bitrdi 286 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))) |
38 | | nsgsubg 18701 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) |
39 | 38 | 3ad2ant2 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑌 ∈ (SubGrp‘𝐺)) |
40 | 39 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑌 ∈ (SubGrp‘𝐺)) |
41 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) |
42 | 4, 41 | eqger 18721 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋) |
43 | 40, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → (𝐺 ~QG 𝑌) Er 𝑋) |
44 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ 𝑋) |
45 | 43, 44 | erth 8505 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))) |
46 | 9 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝐺 ∈ TopGrp) |
47 | 4 | subgss 18671 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) |
48 | 40, 47 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → 𝑌 ⊆ 𝑋) |
49 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(invg‘𝐺) = (invg‘𝐺) |
50 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝐺) = (+g‘𝐺) |
51 | 4, 49, 50, 41 | eqgval 18720 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ⊆ 𝑋) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
52 | 46, 48, 51 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
53 | 37, 45, 52 | 3bitr2d 306 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌))) |
54 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(oppg‘𝐺) = (oppg‘𝐺) |
55 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g‘(oppg‘𝐺)) =
(+g‘(oppg‘𝐺)) |
56 | 50, 54, 55 | oppgplus 18868 |
. . . . . . . . . . . . . . . . 17
⊢
((((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)(+g‘(oppg‘𝐺))𝑎) = (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) |
57 | 56 | mpteq2i 5175 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝑋 ↦ ((((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)(+g‘(oppg‘𝐺))𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
58 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ TopGrp) |
59 | 54 | oppgtgp 23157 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ TopGrp →
(oppg‘𝐺) ∈ TopGrp) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (oppg‘𝐺) ∈
TopGrp) |
61 | 48 | sselda 3917 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) |
62 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ 𝑋 ↦ ((((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)(+g‘(oppg‘𝐺))𝑎)) = (𝑎 ∈ 𝑋 ↦ ((((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)(+g‘(oppg‘𝐺))𝑎)) |
63 | 54, 4 | oppgbas 18871 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑋 =
(Base‘(oppg‘𝐺)) |
64 | 54, 22 | oppgtopn 18875 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐽 =
(TopOpen‘(oppg‘𝐺)) |
65 | 62, 63, 55, 64 | tgplacthmeo 23162 |
. . . . . . . . . . . . . . . . 17
⊢
(((oppg‘𝐺) ∈ TopGrp ∧
(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) → (𝑎 ∈ 𝑋 ↦ ((((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)(+g‘(oppg‘𝐺))𝑎)) ∈ (𝐽Homeo𝐽)) |
66 | 60, 61, 65 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (𝑎 ∈ 𝑋 ↦ ((((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)(+g‘(oppg‘𝐺))𝑎)) ∈ (𝐽Homeo𝐽)) |
67 | 57, 66 | eqeltrrid 2844 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐽Homeo𝐽)) |
68 | | hmeocn 22819 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐽Homeo𝐽) → (𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐽 Cn 𝐽)) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐽 Cn 𝐽)) |
70 | 25 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝑆 ∈ 𝐽) |
71 | | cnima 22324 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐽 Cn 𝐽) ∧ 𝑆 ∈ 𝐽) → (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ∈ 𝐽) |
72 | 69, 70, 71 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ∈ 𝐽) |
73 | 44 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝑦 ∈ 𝑋) |
74 | | tgpgrp 23137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
75 | 58, 74 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ Grp) |
76 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0g‘𝐺) = (0g‘𝐺) |
77 | 4, 50, 76, 49 | grprinv 18544 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋) → (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦)) = (0g‘𝐺)) |
78 | 75, 73, 77 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦)) = (0g‘𝐺)) |
79 | 78 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = ((0g‘𝐺)(+g‘𝐺)𝑧)) |
80 | 4, 49 | grpinvcl 18542 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘𝑦) ∈ 𝑋) |
81 | 75, 73, 80 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ((invg‘𝐺)‘𝑦) ∈ 𝑋) |
82 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝑧 ∈ 𝑋) |
83 | 4, 50 | grpass 18501 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
84 | 75, 73, 81, 82, 83 | syl13anc 1370 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g‘𝐺)((invg‘𝐺)‘𝑦))(+g‘𝐺)𝑧) = (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
85 | 4, 50, 76 | grplid 18524 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺)(+g‘𝐺)𝑧) = 𝑧) |
86 | 75, 82, 85 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ((0g‘𝐺)(+g‘𝐺)𝑧) = 𝑧) |
87 | 79, 84, 86 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = 𝑧) |
88 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝑧 ∈ 𝑆) |
89 | 87, 88 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆) |
90 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑦 → (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
91 | 90 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑦 → ((𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆)) |
92 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = (𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
93 | 92 | mptpreima 6130 |
. . . . . . . . . . . . . . 15
⊢ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) = {𝑎 ∈ 𝑋 ∣ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆} |
94 | 91, 93 | elrab2 3620 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ↔ (𝑦 ∈ 𝑋 ∧ (𝑦(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆)) |
95 | 73, 89, 94 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → 𝑦 ∈ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆)) |
96 | | ecexg 8460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V) |
97 | 7, 96 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ [𝑥](𝐺 ~QG 𝑌) ∈ V |
98 | 97, 6 | fnmpti 6560 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 Fn 𝑋 |
99 | 28 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
100 | | fnfvima 7091 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn 𝑋 ∧ 𝑆 ⊆ 𝑋 ∧ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆) → (𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐹 “ 𝑆)) |
101 | 100 | 3expia 1119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝑋 ∧ 𝑆 ⊆ 𝑋) → ((𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐹 “ 𝑆))) |
102 | 98, 99, 101 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐹 “ 𝑆))) |
103 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → 𝐺 ∈ Grp) |
104 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ 𝑋) |
105 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) |
106 | 4, 50 | grpcl 18500 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) → (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑋) |
107 | 103, 104,
105, 106 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑋) |
108 | | eceq1 8494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) → [𝑥](𝐺 ~QG 𝑌) = [(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))](𝐺 ~QG 𝑌)) |
109 | 108, 6, 97 | fvmpt3i 6862 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑋 → (𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = [(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))](𝐺 ~QG 𝑌)) |
110 | 107, 109 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = [(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))](𝐺 ~QG 𝑌)) |
111 | 43 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (𝐺 ~QG 𝑌) Er 𝑋) |
112 | 4, 50, 76, 49 | grplinv 18543 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋) → (((invg‘𝐺)‘𝑎)(+g‘𝐺)𝑎) = (0g‘𝐺)) |
113 | 103, 104,
112 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (((invg‘𝐺)‘𝑎)(+g‘𝐺)𝑎) = (0g‘𝐺)) |
114 | 113 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((((invg‘𝐺)‘𝑎)(+g‘𝐺)𝑎)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = ((0g‘𝐺)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
115 | 4, 49 | grpinvcl 18542 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋) → ((invg‘𝐺)‘𝑎) ∈ 𝑋) |
116 | 103, 104,
115 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((invg‘𝐺)‘𝑎) ∈ 𝑋) |
117 | 4, 50 | grpass 18501 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑎) ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋)) → ((((invg‘𝐺)‘𝑎)(+g‘𝐺)𝑎)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑎)(+g‘𝐺)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)))) |
118 | 103, 116,
104, 105, 117 | syl13anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((((invg‘𝐺)‘𝑎)(+g‘𝐺)𝑎)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑎)(+g‘𝐺)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)))) |
119 | 4, 50, 76 | grplid 18524 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑋) → ((0g‘𝐺)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) |
120 | 103, 105,
119 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((0g‘𝐺)(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) |
121 | 114, 118,
120 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (((invg‘𝐺)‘𝑎)(+g‘𝐺)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) |
122 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) |
123 | 121, 122 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (((invg‘𝐺)‘𝑎)(+g‘𝐺)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ 𝑌) |
124 | 48 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → 𝑌 ⊆ 𝑋) |
125 | 4, 49, 50, 41 | eqgval 18720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ↔ (𝑎 ∈ 𝑋 ∧ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑎)(+g‘𝐺)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ 𝑌))) |
126 | 103, 124,
125 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ↔ (𝑎 ∈ 𝑋 ∧ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑎)(+g‘𝐺)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ 𝑌))) |
127 | 104, 107,
123, 126 | mpbir3and 1340 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → 𝑎(𝐺 ~QG 𝑌)(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) |
128 | 111, 127 | erthi 8507 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → [𝑎](𝐺 ~QG 𝑌) = [(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))](𝐺 ~QG 𝑌)) |
129 | 110, 128 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → (𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) = [𝑎](𝐺 ~QG 𝑌)) |
130 | 129 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((𝐹‘(𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) ∈ (𝐹 “ 𝑆) ↔ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆))) |
131 | 102, 130 | sylibd 238 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐺 ∈
TopGrp ∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) → ((𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆 → [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆))) |
132 | 131 | ss2rabdv 4005 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → {𝑎 ∈ 𝑋 ∣ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧)) ∈ 𝑆} ⊆ {𝑎 ∈ 𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆)}) |
133 | | eceq1 8494 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → [𝑥](𝐺 ~QG 𝑌) = [𝑎](𝐺 ~QG 𝑌)) |
134 | 133 | cbvmptv 5183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑎 ∈ 𝑋 ↦ [𝑎](𝐺 ~QG 𝑌)) |
135 | 6, 134 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝐹 = (𝑎 ∈ 𝑋 ↦ [𝑎](𝐺 ~QG 𝑌)) |
136 | 135 | mptpreima 6130 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ (𝐹 “ 𝑆)) = {𝑎 ∈ 𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆)} |
137 | 132, 93, 136 | 3sstr4g 3962 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ⊆ (◡𝐹 “ (𝐹 “ 𝑆))) |
138 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆))) |
139 | | sseq1 3942 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) → (𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆)) ↔ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ⊆ (◡𝐹 “ (𝐹 “ 𝑆)))) |
140 | 138, 139 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) → ((𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))) ↔ (𝑦 ∈ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ∧ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
141 | 140 | rspcev 3552 |
. . . . . . . . . . . . 13
⊢ (((◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ∈ 𝐽 ∧ (𝑦 ∈ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ∧ (◡(𝑎 ∈ 𝑋 ↦ (𝑎(+g‘𝐺)(((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧))) “ 𝑆) ⊆ (◡𝐹 “ (𝐹 “ 𝑆)))) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆)))) |
142 | 72, 95, 137, 141 | syl12anc 833 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆)))) |
143 | 142 | 3ad2antr3 1188 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈ TopGrp
∧ 𝑌 ∈
(NrmSGrp‘𝐺) ∧
𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌)) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆)))) |
144 | 143 | ex 412 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → ((𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝑦)(+g‘𝐺)𝑧) ∈ 𝑌) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
145 | 53, 144 | sylbid 239 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
146 | 145 | rexlimdva 3212 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) → (∃𝑧 ∈ 𝑆 (𝐹‘𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
147 | 21, 146 | syl5 34 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) ∧ 𝑦 ∈ 𝑋) → ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
148 | 147 | expimpd 453 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((𝑦 ∈ 𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹 “ 𝑆)) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
149 | 18, 148 | syl5bi 241 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝑦 ∈ (◡𝐹 “ (𝐹 “ 𝑆)) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
150 | 149 | ralrimiv 3106 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ∀𝑦 ∈ (◡𝐹 “ (𝐹 “ 𝑆))∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆)))) |
151 | | topontop 21970 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
152 | | eltop2 22033 |
. . . . 5
⊢ (𝐽 ∈ Top → ((◡𝐹 “ (𝐹 “ 𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (◡𝐹 “ (𝐹 “ 𝑆))∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
153 | 24, 151, 152 | 3syl 18 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((◡𝐹 “ (𝐹 “ 𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (◡𝐹 “ (𝐹 “ 𝑆))∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))))) |
154 | 150, 153 | mpbird 256 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑆)) ∈ 𝐽) |
155 | | elqtop3 22762 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→(𝑋 / (𝐺 ~QG 𝑌))) → ((𝐹 “ 𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (◡𝐹 “ (𝐹 “ 𝑆)) ∈ 𝐽))) |
156 | 24, 10, 155 | syl2anc 583 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → ((𝐹 “ 𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹 “ 𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (◡𝐹 “ (𝐹 “ 𝑆)) ∈ 𝐽))) |
157 | 13, 154, 156 | mpbir2and 709 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ (𝐽 qTop 𝐹)) |
158 | 3, 5, 6, 8, 9 | qusval 17170 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐻 = (𝐹 “s 𝐺)) |
159 | | qustgpopn.k |
. . 3
⊢ 𝐾 = (TopOpen‘𝐻) |
160 | 158, 5, 10, 9, 22, 159 | imastopn 22779 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝐾 = (𝐽 qTop 𝐹)) |
161 | 157, 160 | eleqtrrd 2842 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ 𝐾) |