MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgpopn Structured version   Visualization version   GIF version

Theorem qustgpopn 24128
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgpopn.x 𝑋 = (Base‘𝐺)
qustgpopn.j 𝐽 = (TopOpen‘𝐺)
qustgpopn.k 𝐾 = (TopOpen‘𝐻)
qustgpopn.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qustgpopn ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋   𝑥,𝐻   𝑥,𝐾   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qustgpopn
Dummy variables 𝑎 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6089 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
2 qustgp.h . . . . . . 7 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
32a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
4 qustgpopn.x . . . . . . 7 𝑋 = (Base‘𝐺)
54a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑋 = (Base‘𝐺))
6 qustgpopn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
7 ovex 7464 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
87a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐺 ~QG 𝑌) ∈ V)
9 simp1 1137 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐺 ∈ TopGrp)
103, 5, 6, 8, 9quslem 17588 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)))
11 forn 6823 . . . . 5 (𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
1210, 11syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
131, 12sseqtrid 4026 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)))
14 eceq1 8784 . . . . . . . . . 10 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
1514cbvmptv 5255 . . . . . . . . 9 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
166, 15eqtri 2765 . . . . . . . 8 𝐹 = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
1716mptpreima 6258 . . . . . . 7 (𝐹 “ (𝐹𝑆)) = {𝑦𝑋 ∣ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
1817reqabi 3460 . . . . . 6 (𝑦 ∈ (𝐹 “ (𝐹𝑆)) ↔ (𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
196funmpt2 6605 . . . . . . . . 9 Fun 𝐹
20 fvelima 6974 . . . . . . . . 9 ((Fun 𝐹 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
2119, 20mpan 690 . . . . . . . 8 ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
22 qustgpopn.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (TopOpen‘𝐺)
2322, 4tgptopon 24090 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
249, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 simp3 1139 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝐽)
26 toponss 22933 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝐽) → 𝑆𝑋)
2724, 25, 26syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝑋)
2827adantr 480 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → 𝑆𝑋)
2928sselda 3983 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
30 eceq1 8784 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
31 ecexg 8749 . . . . . . . . . . . . . . . 16 ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V)
327, 31ax-mp 5 . . . . . . . . . . . . . . 15 [𝑧](𝐺 ~QG 𝑌) ∈ V
3330, 6, 32fvmpt 7016 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3429, 33syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3534eqeq1d 2739 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)))
36 eqcom 2744 . . . . . . . . . . . 12 ([𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
3735, 36bitrdi 287 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
38 nsgsubg 19176 . . . . . . . . . . . . . . 15 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
39383ad2ant2 1135 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑌 ∈ (SubGrp‘𝐺))
4039ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌 ∈ (SubGrp‘𝐺))
41 eqid 2737 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
424, 41eqger 19196 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
4340, 42syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐺 ~QG 𝑌) Er 𝑋)
44 simplr 769 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑦𝑋)
4543, 44erth 8796 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
469ad2antrr 726 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝐺 ∈ TopGrp)
474subgss 19145 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
4840, 47syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌𝑋)
49 eqid 2737 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
50 eqid 2737 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
514, 49, 50, 41eqgval 19195 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌𝑋) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5246, 48, 51syl2anc 584 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5337, 45, 523bitr2d 307 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
54 eqid 2737 . . . . . . . . . . . . . . . . . 18 (oppg𝐺) = (oppg𝐺)
55 eqid 2737 . . . . . . . . . . . . . . . . . 18 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
5650, 54, 55oppgplus 19367 . . . . . . . . . . . . . . . . 17 ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎) = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))
5756mpteq2i 5247 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
5846adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ TopGrp)
5954oppgtgp 24106 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
6058, 59syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (oppg𝐺) ∈ TopGrp)
6148sselda 3983 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
62 eqid 2737 . . . . . . . . . . . . . . . . . 18 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎))
6354, 4oppgbas 19370 . . . . . . . . . . . . . . . . . 18 𝑋 = (Base‘(oppg𝐺))
6454, 22oppgtopn 19372 . . . . . . . . . . . . . . . . . 18 𝐽 = (TopOpen‘(oppg𝐺))
6562, 63, 55, 64tgplacthmeo 24111 . . . . . . . . . . . . . . . . 17 (((oppg𝐺) ∈ TopGrp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6660, 61, 65syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6757, 66eqeltrrid 2846 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽))
68 hmeocn 23768 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
6967, 68syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
7025ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑆𝐽)
71 cnima 23273 . . . . . . . . . . . . . 14 (((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽) ∧ 𝑆𝐽) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7269, 70, 71syl2anc 584 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7344adantr 480 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦𝑋)
74 tgpgrp 24086 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
7558, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ Grp)
76 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
774, 50, 76, 49grprinv 19008 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7875, 73, 77syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7978oveq1d 7446 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
804, 49grpinvcl 19005 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8175, 73, 80syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8229adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑋)
834, 50grpass 18960 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑦𝑋 ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
8475, 73, 81, 82, 83syl13anc 1374 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
854, 50, 76grplid 18985 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8675, 82, 85syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8779, 84, 863eqtr3d 2785 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
88 simplr 769 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑆)
8987, 88eqeltrd 2841 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆)
90 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9190eleq1d 2826 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 ↔ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
92 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9392mptpreima 6258 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) = {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆}
9491, 93elrab2 3695 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ↔ (𝑦𝑋 ∧ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
9573, 89, 94sylanbrc 583 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆))
96 ecexg 8749 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
977, 96ax-mp 5 . . . . . . . . . . . . . . . . . 18 [𝑥](𝐺 ~QG 𝑌) ∈ V
9897, 6fnmpti 6711 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
9928ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑆𝑋)
100 fnfvima 7253 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑋𝑆𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆))
1011003expia 1122 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑆𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10298, 99, 101sylancr 587 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10375adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝐺 ∈ Grp)
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎𝑋)
10561adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
1064, 50grpcl 18959 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
107103, 104, 105, 106syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
108 eceq1 8784 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) → [𝑥](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
109108, 6, 97fvmpt3i 7021 . . . . . . . . . . . . . . . . . . 19 ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
110107, 109syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
11143ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐺 ~QG 𝑌) Er 𝑋)
1124, 50, 76, 49grplinv 19007 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
113103, 104, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
114113oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
1154, 49grpinvcl 19005 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
116103, 104, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
1174, 50grpass 18960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑎) ∈ 𝑋𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
118103, 116, 104, 105, 117syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
1194, 50, 76grplid 18985 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
120103, 105, 119syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
121114, 118, 1203eqtr3d 2785 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
122 simplr 769 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
123121, 122eqeltrd 2841 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)
12448ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑌𝑋)
1254, 49, 50, 41eqgval 19195 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
126103, 124, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
127104, 107, 123, 126mpbir3and 1343 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
128111, 127erthi 8798 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → [𝑎](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
129110, 128eqtr4d 2780 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [𝑎](𝐺 ~QG 𝑌))
130129eleq1d 2826 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆) ↔ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
131102, 130sylibd 239 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
132131ss2rabdv 4076 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆} ⊆ {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)})
133 eceq1 8784 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → [𝑥](𝐺 ~QG 𝑌) = [𝑎](𝐺 ~QG 𝑌))
134133cbvmptv 5255 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
1356, 134eqtri 2765 . . . . . . . . . . . . . . 15 𝐹 = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
136135mptpreima 6258 . . . . . . . . . . . . . 14 (𝐹 “ (𝐹𝑆)) = {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
137132, 93, 1363sstr4g 4037 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))
138 eleq2 2830 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑦𝑢𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆)))
139 sseq1 4009 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑢 ⊆ (𝐹 “ (𝐹𝑆)) ↔ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆))))
140138, 139anbi12d 632 . . . . . . . . . . . . . 14 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → ((𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))) ↔ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))))
141140rspcev 3622 . . . . . . . . . . . . 13 ((((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
14272, 95, 137, 141syl12anc 837 . . . . . . . . . . . 12 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
1431423ad2antr3 1191 . . . . . . . . . . 11 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
144143ex 412 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14553, 144sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
146145rexlimdva 3155 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → (∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14721, 146syl5 34 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
148147expimpd 453 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14918, 148biimtrid 242 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝑦 ∈ (𝐹 “ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
150149ralrimiv 3145 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
151 topontop 22919 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
152 eltop2 22982 . . . . 5 (𝐽 ∈ Top → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
15324, 151, 1523syl 18 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
154150, 153mpbird 257 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹 “ (𝐹𝑆)) ∈ 𝐽)
155 elqtop3 23711 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌))) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15624, 10, 155syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15713, 154, 156mpbir2and 713 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ (𝐽 qTop 𝐹))
1583, 5, 6, 8, 9qusval 17587 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐹s 𝐺))
159 qustgpopn.k . . 3 𝐾 = (TopOpen‘𝐻)
160158, 5, 10, 9, 22, 159imastopn 23728 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐾 = (𝐽 qTop 𝐹))
161157, 160eleqtrrd 2844 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  ccnv 5684  ran crn 5686  cima 5688  Fun wfun 6555   Fn wfn 6556  ontowfo 6559  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743   / cqs 8744  Basecbs 17247  +gcplusg 17297  TopOpenctopn 17466  0gc0g 17484   qTop cqtop 17548   /s cqus 17550  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138  NrmSGrpcnsg 19139   ~QG cqg 19140  oppgcoppg 19363  Topctop 22899  TopOnctopon 22916   Cn ccn 23232  Homeochmeo 23761  TopGrpctgp 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-rest 17467  df-topn 17468  df-0g 17486  df-topgen 17488  df-qtop 17552  df-imas 17553  df-qus 17554  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-nsg 19142  df-eqg 19143  df-oppg 19364  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-tmd 24080  df-tgp 24081
This theorem is referenced by:  qustgplem  24129
  Copyright terms: Public domain W3C validator