MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgpopn Structured version   Visualization version   GIF version

Theorem qustgpopn 23983
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgpopn.x 𝑋 = (Base‘𝐺)
qustgpopn.j 𝐽 = (TopOpen‘𝐺)
qustgpopn.k 𝐾 = (TopOpen‘𝐻)
qustgpopn.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qustgpopn ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋   𝑥,𝐻   𝑥,𝐾   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qustgpopn
Dummy variables 𝑎 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6031 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
2 qustgp.h . . . . . . 7 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
32a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
4 qustgpopn.x . . . . . . 7 𝑋 = (Base‘𝐺)
54a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑋 = (Base‘𝐺))
6 qustgpopn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
7 ovex 7402 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
87a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐺 ~QG 𝑌) ∈ V)
9 simp1 1136 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐺 ∈ TopGrp)
103, 5, 6, 8, 9quslem 17482 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)))
11 forn 6757 . . . . 5 (𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
1210, 11syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
131, 12sseqtrid 3986 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)))
14 eceq1 8687 . . . . . . . . . 10 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
1514cbvmptv 5206 . . . . . . . . 9 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
166, 15eqtri 2752 . . . . . . . 8 𝐹 = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
1716mptpreima 6199 . . . . . . 7 (𝐹 “ (𝐹𝑆)) = {𝑦𝑋 ∣ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
1817reqabi 3426 . . . . . 6 (𝑦 ∈ (𝐹 “ (𝐹𝑆)) ↔ (𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
196funmpt2 6539 . . . . . . . . 9 Fun 𝐹
20 fvelima 6908 . . . . . . . . 9 ((Fun 𝐹 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
2119, 20mpan 690 . . . . . . . 8 ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
22 qustgpopn.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (TopOpen‘𝐺)
2322, 4tgptopon 23945 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
249, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝐽)
26 toponss 22790 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝐽) → 𝑆𝑋)
2724, 25, 26syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝑋)
2827adantr 480 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → 𝑆𝑋)
2928sselda 3943 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
30 eceq1 8687 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
31 ecexg 8652 . . . . . . . . . . . . . . . 16 ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V)
327, 31ax-mp 5 . . . . . . . . . . . . . . 15 [𝑧](𝐺 ~QG 𝑌) ∈ V
3330, 6, 32fvmpt 6950 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3429, 33syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3534eqeq1d 2731 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)))
36 eqcom 2736 . . . . . . . . . . . 12 ([𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
3735, 36bitrdi 287 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
38 nsgsubg 19066 . . . . . . . . . . . . . . 15 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
39383ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑌 ∈ (SubGrp‘𝐺))
4039ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌 ∈ (SubGrp‘𝐺))
41 eqid 2729 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
424, 41eqger 19086 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
4340, 42syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐺 ~QG 𝑌) Er 𝑋)
44 simplr 768 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑦𝑋)
4543, 44erth 8702 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
469ad2antrr 726 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝐺 ∈ TopGrp)
474subgss 19035 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
4840, 47syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌𝑋)
49 eqid 2729 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
50 eqid 2729 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
514, 49, 50, 41eqgval 19085 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌𝑋) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5246, 48, 51syl2anc 584 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5337, 45, 523bitr2d 307 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
54 eqid 2729 . . . . . . . . . . . . . . . . . 18 (oppg𝐺) = (oppg𝐺)
55 eqid 2729 . . . . . . . . . . . . . . . . . 18 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
5650, 54, 55oppgplus 19257 . . . . . . . . . . . . . . . . 17 ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎) = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))
5756mpteq2i 5198 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
5846adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ TopGrp)
5954oppgtgp 23961 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
6058, 59syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (oppg𝐺) ∈ TopGrp)
6148sselda 3943 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
62 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎))
6354, 4oppgbas 19259 . . . . . . . . . . . . . . . . . 18 𝑋 = (Base‘(oppg𝐺))
6454, 22oppgtopn 19261 . . . . . . . . . . . . . . . . . 18 𝐽 = (TopOpen‘(oppg𝐺))
6562, 63, 55, 64tgplacthmeo 23966 . . . . . . . . . . . . . . . . 17 (((oppg𝐺) ∈ TopGrp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6660, 61, 65syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6757, 66eqeltrrid 2833 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽))
68 hmeocn 23623 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
6967, 68syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
7025ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑆𝐽)
71 cnima 23128 . . . . . . . . . . . . . 14 (((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽) ∧ 𝑆𝐽) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7269, 70, 71syl2anc 584 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7344adantr 480 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦𝑋)
74 tgpgrp 23941 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
7558, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ Grp)
76 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
774, 50, 76, 49grprinv 18898 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7875, 73, 77syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7978oveq1d 7384 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
804, 49grpinvcl 18895 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8175, 73, 80syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8229adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑋)
834, 50grpass 18850 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑦𝑋 ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
8475, 73, 81, 82, 83syl13anc 1374 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
854, 50, 76grplid 18875 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8675, 82, 85syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8779, 84, 863eqtr3d 2772 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
88 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑆)
8987, 88eqeltrd 2828 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆)
90 oveq1 7376 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9190eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 ↔ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
92 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9392mptpreima 6199 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) = {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆}
9491, 93elrab2 3659 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ↔ (𝑦𝑋 ∧ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
9573, 89, 94sylanbrc 583 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆))
96 ecexg 8652 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
977, 96ax-mp 5 . . . . . . . . . . . . . . . . . 18 [𝑥](𝐺 ~QG 𝑌) ∈ V
9897, 6fnmpti 6643 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
9928ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑆𝑋)
100 fnfvima 7189 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑋𝑆𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆))
1011003expia 1121 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑆𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10298, 99, 101sylancr 587 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10375adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝐺 ∈ Grp)
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎𝑋)
10561adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
1064, 50grpcl 18849 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
107103, 104, 105, 106syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
108 eceq1 8687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) → [𝑥](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
109108, 6, 97fvmpt3i 6955 . . . . . . . . . . . . . . . . . . 19 ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
110107, 109syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
11143ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐺 ~QG 𝑌) Er 𝑋)
1124, 50, 76, 49grplinv 18897 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
113103, 104, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
114113oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
1154, 49grpinvcl 18895 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
116103, 104, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
1174, 50grpass 18850 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑎) ∈ 𝑋𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
118103, 116, 104, 105, 117syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
1194, 50, 76grplid 18875 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
120103, 105, 119syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
121114, 118, 1203eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
122 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
123121, 122eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)
12448ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑌𝑋)
1254, 49, 50, 41eqgval 19085 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
126103, 124, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
127104, 107, 123, 126mpbir3and 1343 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
128111, 127erthi 8704 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → [𝑎](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
129110, 128eqtr4d 2767 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [𝑎](𝐺 ~QG 𝑌))
130129eleq1d 2813 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆) ↔ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
131102, 130sylibd 239 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
132131ss2rabdv 4035 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆} ⊆ {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)})
133 eceq1 8687 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → [𝑥](𝐺 ~QG 𝑌) = [𝑎](𝐺 ~QG 𝑌))
134133cbvmptv 5206 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
1356, 134eqtri 2752 . . . . . . . . . . . . . . 15 𝐹 = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
136135mptpreima 6199 . . . . . . . . . . . . . 14 (𝐹 “ (𝐹𝑆)) = {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
137132, 93, 1363sstr4g 3997 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))
138 eleq2 2817 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑦𝑢𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆)))
139 sseq1 3969 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑢 ⊆ (𝐹 “ (𝐹𝑆)) ↔ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆))))
140138, 139anbi12d 632 . . . . . . . . . . . . . 14 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → ((𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))) ↔ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))))
141140rspcev 3585 . . . . . . . . . . . . 13 ((((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
14272, 95, 137, 141syl12anc 836 . . . . . . . . . . . 12 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
1431423ad2antr3 1191 . . . . . . . . . . 11 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
144143ex 412 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14553, 144sylbid 240 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
146145rexlimdva 3134 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → (∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14721, 146syl5 34 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
148147expimpd 453 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14918, 148biimtrid 242 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝑦 ∈ (𝐹 “ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
150149ralrimiv 3124 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
151 topontop 22776 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
152 eltop2 22838 . . . . 5 (𝐽 ∈ Top → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
15324, 151, 1523syl 18 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
154150, 153mpbird 257 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹 “ (𝐹𝑆)) ∈ 𝐽)
155 elqtop3 23566 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌))) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15624, 10, 155syl2anc 584 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15713, 154, 156mpbir2and 713 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ (𝐽 qTop 𝐹))
1583, 5, 6, 8, 9qusval 17481 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐹s 𝐺))
159 qustgpopn.k . . 3 𝐾 = (TopOpen‘𝐻)
160158, 5, 10, 9, 22, 159imastopn 23583 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐾 = (𝐽 qTop 𝐹))
161157, 160eleqtrrd 2831 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  ccnv 5630  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369   Er wer 8645  [cec 8646   / cqs 8647  Basecbs 17155  +gcplusg 17196  TopOpenctopn 17360  0gc0g 17378   qTop cqtop 17442   /s cqus 17444  Grpcgrp 18841  invgcminusg 18842  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030  oppgcoppg 19253  Topctop 22756  TopOnctopon 22773   Cn ccn 23087  Homeochmeo 23616  TopGrpctgp 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-qtop 17446  df-imas 17447  df-qus 17448  df-plusf 18542  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-nsg 19032  df-eqg 19033  df-oppg 19254  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-tmd 23935  df-tgp 23936
This theorem is referenced by:  qustgplem  23984
  Copyright terms: Public domain W3C validator