MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgpopn Structured version   Visualization version   GIF version

Theorem qustgpopn 22989
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgpopn.x 𝑋 = (Base‘𝐺)
qustgpopn.j 𝐽 = (TopOpen‘𝐺)
qustgpopn.k 𝐾 = (TopOpen‘𝐻)
qustgpopn.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qustgpopn ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋   𝑥,𝐻   𝑥,𝐾   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qustgpopn
Dummy variables 𝑎 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5929 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
2 qustgp.h . . . . . . 7 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
32a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
4 qustgpopn.x . . . . . . 7 𝑋 = (Base‘𝐺)
54a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑋 = (Base‘𝐺))
6 qustgpopn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
7 ovex 7235 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
87a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐺 ~QG 𝑌) ∈ V)
9 simp1 1138 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐺 ∈ TopGrp)
103, 5, 6, 8, 9quslem 17020 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)))
11 forn 6625 . . . . 5 (𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
1210, 11syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
131, 12sseqtrid 3943 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)))
14 eceq1 8418 . . . . . . . . . 10 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
1514cbvmptv 5147 . . . . . . . . 9 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
166, 15eqtri 2762 . . . . . . . 8 𝐹 = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
1716mptpreima 6090 . . . . . . 7 (𝐹 “ (𝐹𝑆)) = {𝑦𝑋 ∣ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
1817rabeq2i 3391 . . . . . 6 (𝑦 ∈ (𝐹 “ (𝐹𝑆)) ↔ (𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
196funmpt2 6408 . . . . . . . . 9 Fun 𝐹
20 fvelima 6767 . . . . . . . . 9 ((Fun 𝐹 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
2119, 20mpan 690 . . . . . . . 8 ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
22 qustgpopn.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (TopOpen‘𝐺)
2322, 4tgptopon 22951 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
249, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 simp3 1140 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝐽)
26 toponss 21796 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝐽) → 𝑆𝑋)
2724, 25, 26syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝑋)
2827adantr 484 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → 𝑆𝑋)
2928sselda 3891 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
30 eceq1 8418 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
31 ecexg 8384 . . . . . . . . . . . . . . . 16 ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V)
327, 31ax-mp 5 . . . . . . . . . . . . . . 15 [𝑧](𝐺 ~QG 𝑌) ∈ V
3330, 6, 32fvmpt 6807 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3429, 33syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3534eqeq1d 2736 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)))
36 eqcom 2741 . . . . . . . . . . . 12 ([𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
3735, 36bitrdi 290 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
38 nsgsubg 18546 . . . . . . . . . . . . . . 15 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
39383ad2ant2 1136 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑌 ∈ (SubGrp‘𝐺))
4039ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌 ∈ (SubGrp‘𝐺))
41 eqid 2734 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
424, 41eqger 18566 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
4340, 42syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐺 ~QG 𝑌) Er 𝑋)
44 simplr 769 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑦𝑋)
4543, 44erth 8429 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
469ad2antrr 726 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝐺 ∈ TopGrp)
474subgss 18516 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
4840, 47syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌𝑋)
49 eqid 2734 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
50 eqid 2734 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
514, 49, 50, 41eqgval 18565 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌𝑋) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5246, 48, 51syl2anc 587 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5337, 45, 523bitr2d 310 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
54 eqid 2734 . . . . . . . . . . . . . . . . . 18 (oppg𝐺) = (oppg𝐺)
55 eqid 2734 . . . . . . . . . . . . . . . . . 18 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
5650, 54, 55oppgplus 18713 . . . . . . . . . . . . . . . . 17 ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎) = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))
5756mpteq2i 5136 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
5846adantr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ TopGrp)
5954oppgtgp 22967 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
6058, 59syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (oppg𝐺) ∈ TopGrp)
6148sselda 3891 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
62 eqid 2734 . . . . . . . . . . . . . . . . . 18 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎))
6354, 4oppgbas 18715 . . . . . . . . . . . . . . . . . 18 𝑋 = (Base‘(oppg𝐺))
6454, 22oppgtopn 18717 . . . . . . . . . . . . . . . . . 18 𝐽 = (TopOpen‘(oppg𝐺))
6562, 63, 55, 64tgplacthmeo 22972 . . . . . . . . . . . . . . . . 17 (((oppg𝐺) ∈ TopGrp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6660, 61, 65syl2anc 587 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6757, 66eqeltrrid 2839 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽))
68 hmeocn 22629 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
6967, 68syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
7025ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑆𝐽)
71 cnima 22134 . . . . . . . . . . . . . 14 (((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽) ∧ 𝑆𝐽) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7269, 70, 71syl2anc 587 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7344adantr 484 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦𝑋)
74 tgpgrp 22947 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
7558, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ Grp)
76 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
774, 50, 76, 49grprinv 18389 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7875, 73, 77syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7978oveq1d 7217 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
804, 49grpinvcl 18387 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8175, 73, 80syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8229adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑋)
834, 50grpass 18346 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑦𝑋 ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
8475, 73, 81, 82, 83syl13anc 1374 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
854, 50, 76grplid 18369 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8675, 82, 85syl2anc 587 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8779, 84, 863eqtr3d 2782 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
88 simplr 769 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑆)
8987, 88eqeltrd 2834 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆)
90 oveq1 7209 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9190eleq1d 2818 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 ↔ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
92 eqid 2734 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9392mptpreima 6090 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) = {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆}
9491, 93elrab2 3598 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ↔ (𝑦𝑋 ∧ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
9573, 89, 94sylanbrc 586 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆))
96 ecexg 8384 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
977, 96ax-mp 5 . . . . . . . . . . . . . . . . . 18 [𝑥](𝐺 ~QG 𝑌) ∈ V
9897, 6fnmpti 6510 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
9928ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑆𝑋)
100 fnfvima 7038 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑋𝑆𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆))
1011003expia 1123 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑆𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10298, 99, 101sylancr 590 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10375adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝐺 ∈ Grp)
104 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎𝑋)
10561adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
1064, 50grpcl 18345 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
107103, 104, 105, 106syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
108 eceq1 8418 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) → [𝑥](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
109108, 6, 97fvmpt3i 6812 . . . . . . . . . . . . . . . . . . 19 ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
110107, 109syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
11143ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐺 ~QG 𝑌) Er 𝑋)
1124, 50, 76, 49grplinv 18388 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
113103, 104, 112syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
114113oveq1d 7217 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
1154, 49grpinvcl 18387 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
116103, 104, 115syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
1174, 50grpass 18346 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑎) ∈ 𝑋𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
118103, 116, 104, 105, 117syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
1194, 50, 76grplid 18369 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
120103, 105, 119syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
121114, 118, 1203eqtr3d 2782 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
122 simplr 769 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
123121, 122eqeltrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)
12448ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑌𝑋)
1254, 49, 50, 41eqgval 18565 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
126103, 124, 125syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
127104, 107, 123, 126mpbir3and 1344 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
128111, 127erthi 8431 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → [𝑎](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
129110, 128eqtr4d 2777 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [𝑎](𝐺 ~QG 𝑌))
130129eleq1d 2818 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆) ↔ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
131102, 130sylibd 242 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
132131ss2rabdv 3979 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆} ⊆ {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)})
133 eceq1 8418 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → [𝑥](𝐺 ~QG 𝑌) = [𝑎](𝐺 ~QG 𝑌))
134133cbvmptv 5147 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
1356, 134eqtri 2762 . . . . . . . . . . . . . . 15 𝐹 = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
136135mptpreima 6090 . . . . . . . . . . . . . 14 (𝐹 “ (𝐹𝑆)) = {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
137132, 93, 1363sstr4g 3936 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))
138 eleq2 2822 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑦𝑢𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆)))
139 sseq1 3916 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑢 ⊆ (𝐹 “ (𝐹𝑆)) ↔ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆))))
140138, 139anbi12d 634 . . . . . . . . . . . . . 14 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → ((𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))) ↔ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))))
141140rspcev 3530 . . . . . . . . . . . . 13 ((((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
14272, 95, 137, 141syl12anc 837 . . . . . . . . . . . 12 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
1431423ad2antr3 1192 . . . . . . . . . . 11 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
144143ex 416 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14553, 144sylbid 243 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
146145rexlimdva 3196 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → (∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14721, 146syl5 34 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
148147expimpd 457 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14918, 148syl5bi 245 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝑦 ∈ (𝐹 “ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
150149ralrimiv 3097 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
151 topontop 21782 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
152 eltop2 21844 . . . . 5 (𝐽 ∈ Top → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
15324, 151, 1523syl 18 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
154150, 153mpbird 260 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹 “ (𝐹𝑆)) ∈ 𝐽)
155 elqtop3 22572 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌))) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15624, 10, 155syl2anc 587 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15713, 154, 156mpbir2and 713 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ (𝐽 qTop 𝐹))
1583, 5, 6, 8, 9qusval 17019 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐹s 𝐺))
159 qustgpopn.k . . 3 𝐾 = (TopOpen‘𝐻)
160158, 5, 10, 9, 22, 159imastopn 22589 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐾 = (𝐽 qTop 𝐹))
161157, 160eleqtrrd 2837 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  wss 3857   class class class wbr 5043  cmpt 5124  ccnv 5539  ran crn 5541  cima 5543  Fun wfun 6363   Fn wfn 6364  ontowfo 6367  cfv 6369  (class class class)co 7202   Er wer 8377  [cec 8378   / cqs 8379  Basecbs 16684  +gcplusg 16767  TopOpenctopn 16898  0gc0g 16916   qTop cqtop 16980   /s cqus 16982  Grpcgrp 18337  invgcminusg 18338  SubGrpcsubg 18509  NrmSGrpcnsg 18510   ~QG cqg 18511  oppgcoppg 18709  Topctop 21762  TopOnctopon 21779   Cn ccn 22093  Homeochmeo 22622  TopGrpctgp 22940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-ec 8382  df-qs 8386  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-rest 16899  df-topn 16900  df-0g 16918  df-topgen 16920  df-qtop 16984  df-imas 16985  df-qus 16986  df-plusf 18085  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-subg 18512  df-nsg 18513  df-eqg 18514  df-oppg 18710  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cn 22096  df-cnp 22097  df-tx 22431  df-hmeo 22624  df-tmd 22941  df-tgp 22942
This theorem is referenced by:  qustgplem  22990
  Copyright terms: Public domain W3C validator