![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpaddsubass | Structured version Visualization version GIF version |
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubadd.p | ⊢ + = (+g‘𝐺) |
grpsubadd.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpaddsubass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
2 | simpr1 1194 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | simpr2 1195 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
4 | grpsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqid 2740 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | 4, 5 | grpinvcl 19027 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
7 | 6 | 3ad2antr3 1190 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
8 | grpsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 4, 8 | grpass 18982 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
10 | 1, 2, 3, 7, 9 | syl13anc 1372 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
11 | 4, 8 | grpcl 18981 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
12 | 11 | 3adant3r3 1184 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
13 | simpr3 1196 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
14 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
15 | 4, 8, 5, 14 | grpsubval 19025 | . . 3 ⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍))) |
16 | 12, 13, 15 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍))) |
17 | 4, 8, 5, 14 | grpsubval 19025 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌 + ((invg‘𝐺)‘𝑍))) |
18 | 3, 13, 17 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 − 𝑍) = (𝑌 + ((invg‘𝐺)‘𝑍))) |
19 | 18 | oveq2d 7464 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
20 | 10, 16, 19 | 3eqtr4d 2790 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 invgcminusg 18974 -gcsg 18975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 |
This theorem is referenced by: grppncan 19071 grpnpncan 19075 nsgconj 19199 conjghm 19289 conjnmz 19292 conjnmzb 19293 sylow3lem1 19669 sylow3lem2 19670 abladdsub 19854 ablsubadd23 19855 ablsubaddsub 19856 ablsubsub 19859 cpmadugsumlemF 22903 archiabllem2a 33174 |
Copyright terms: Public domain | W3C validator |