![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpaddsubass | Structured version Visualization version GIF version |
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubadd.p | ⊢ + = (+g‘𝐺) |
grpsubadd.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpaddsubass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
2 | simpr1 1192 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | simpr2 1193 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
4 | grpsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqid 2727 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | 4, 5 | grpinvcl 18929 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
7 | 6 | 3ad2antr3 1188 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
8 | grpsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 4, 8 | grpass 18884 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
10 | 1, 2, 3, 7, 9 | syl13anc 1370 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
11 | 4, 8 | grpcl 18883 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
12 | 11 | 3adant3r3 1182 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
13 | simpr3 1194 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
14 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
15 | 4, 8, 5, 14 | grpsubval 18927 | . . 3 ⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍))) |
16 | 12, 13, 15 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍))) |
17 | 4, 8, 5, 14 | grpsubval 18927 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌 + ((invg‘𝐺)‘𝑍))) |
18 | 3, 13, 17 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 − 𝑍) = (𝑌 + ((invg‘𝐺)‘𝑍))) |
19 | 18 | oveq2d 7430 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
20 | 10, 16, 19 | 3eqtr4d 2777 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 Basecbs 17165 +gcplusg 17218 Grpcgrp 18875 invgcminusg 18876 -gcsg 18877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-0g 17408 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-grp 18878 df-minusg 18879 df-sbg 18880 |
This theorem is referenced by: grppncan 18971 grpnpncan 18975 nsgconj 19098 conjghm 19187 conjnmz 19190 conjnmzb 19191 sylow3lem1 19566 sylow3lem2 19567 abladdsub 19751 ablsubadd23 19752 ablsubaddsub 19753 ablsubsub 19756 cpmadugsumlemF 22752 archiabllem2a 32867 |
Copyright terms: Public domain | W3C validator |