MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpaddsubass Structured version   Visualization version   GIF version

Theorem grpaddsubass 18665
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpaddsubass ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))

Proof of Theorem grpaddsubass
StepHypRef Expression
1 simpl 483 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 simpr1 1193 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
3 simpr2 1194 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
4 grpsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
5 eqid 2738 . . . . 5 (invg𝐺) = (invg𝐺)
64, 5grpinvcl 18627 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
763ad2antr3 1189 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
8 grpsubadd.p . . . 4 + = (+g𝐺)
94, 8grpass 18586 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
101, 2, 3, 7, 9syl13anc 1371 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
114, 8grpcl 18585 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
12113adant3r3 1183 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
13 simpr3 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
14 grpsubadd.m . . . 4 = (-g𝐺)
154, 8, 5, 14grpsubval 18625 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)))
1612, 13, 15syl2anc 584 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)))
174, 8, 5, 14grpsubval 18625 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌 + ((invg𝐺)‘𝑍)))
183, 13, 17syl2anc 584 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) = (𝑌 + ((invg𝐺)‘𝑍)))
1918oveq2d 7291 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
2010, 16, 193eqtr4d 2788 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582
This theorem is referenced by:  grppncan  18666  grpnpncan  18670  nsgconj  18787  conjghm  18865  conjnmz  18868  conjnmzb  18869  sylow3lem1  19232  sylow3lem2  19233  abladdsub  19416  ablsubsub  19419  cpmadugsumlemF  22025  archiabllem2a  31448
  Copyright terms: Public domain W3C validator