MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpaddsubass Structured version   Visualization version   GIF version

Theorem grpaddsubass 18985
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpaddsubass ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))

Proof of Theorem grpaddsubass
StepHypRef Expression
1 simpl 481 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 simpr1 1191 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
3 simpr2 1192 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
4 grpsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
5 eqid 2725 . . . . 5 (invg𝐺) = (invg𝐺)
64, 5grpinvcl 18943 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
763ad2antr3 1187 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
8 grpsubadd.p . . . 4 + = (+g𝐺)
94, 8grpass 18898 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
101, 2, 3, 7, 9syl13anc 1369 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
114, 8grpcl 18897 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
12113adant3r3 1181 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
13 simpr3 1193 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
14 grpsubadd.m . . . 4 = (-g𝐺)
154, 8, 5, 14grpsubval 18941 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)))
1612, 13, 15syl2anc 582 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)))
174, 8, 5, 14grpsubval 18941 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌 + ((invg𝐺)‘𝑍)))
183, 13, 17syl2anc 582 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) = (𝑌 + ((invg𝐺)‘𝑍)))
1918oveq2d 7429 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
2010, 16, 193eqtr4d 2775 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6543  (class class class)co 7413  Basecbs 17174  +gcplusg 17227  Grpcgrp 18889  invgcminusg 18890  -gcsg 18891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18892  df-minusg 18893  df-sbg 18894
This theorem is referenced by:  grppncan  18986  grpnpncan  18990  nsgconj  19113  conjghm  19202  conjnmz  19205  conjnmzb  19206  sylow3lem1  19581  sylow3lem2  19582  abladdsub  19766  ablsubadd23  19767  ablsubaddsub  19768  ablsubsub  19771  cpmadugsumlemF  22791  archiabllem2a  32942
  Copyright terms: Public domain W3C validator