MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpaddsubass Structured version   Visualization version   GIF version

Theorem grpaddsubass 19013
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpaddsubass ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))

Proof of Theorem grpaddsubass
StepHypRef Expression
1 simpl 482 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 simpr1 1195 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
3 simpr2 1196 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
4 grpsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
5 eqid 2735 . . . . 5 (invg𝐺) = (invg𝐺)
64, 5grpinvcl 18970 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
763ad2antr3 1191 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
8 grpsubadd.p . . . 4 + = (+g𝐺)
94, 8grpass 18925 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
101, 2, 3, 7, 9syl13anc 1374 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
114, 8grpcl 18924 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
12113adant3r3 1185 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
13 simpr3 1197 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
14 grpsubadd.m . . . 4 = (-g𝐺)
154, 8, 5, 14grpsubval 18968 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)))
1612, 13, 15syl2anc 584 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 + 𝑌) + ((invg𝐺)‘𝑍)))
174, 8, 5, 14grpsubval 18968 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌 + ((invg𝐺)‘𝑍)))
183, 13, 17syl2anc 584 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) = (𝑌 + ((invg𝐺)‘𝑍)))
1918oveq2d 7421 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑌 𝑍)) = (𝑋 + (𝑌 + ((invg𝐺)‘𝑍))))
2010, 16, 193eqtr4d 2780 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = (𝑋 + (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Grpcgrp 18916  invgcminusg 18917  -gcsg 18918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921
This theorem is referenced by:  grppncan  19014  grpnpncan  19018  nsgconj  19142  conjghm  19232  conjnmz  19235  conjnmzb  19236  sylow3lem1  19608  sylow3lem2  19609  abladdsub  19793  ablsubadd23  19794  ablsubaddsub  19795  ablsubsub  19798  cpmadugsumlemF  22814  archiabllem2a  33192
  Copyright terms: Public domain W3C validator