Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss | Structured version Visualization version GIF version |
Description: Subset law for projective subspace sum. (unss 4114 analog.) (Contributed by NM, 7-Mar-2012.) |
Ref | Expression |
---|---|
paddss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddss.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
paddss.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddss | ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝐾 ∈ 𝐵) | |
2 | simpr1 1192 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑋 ⊆ 𝐴) | |
3 | simpr2 1193 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑌 ⊆ 𝐴) | |
4 | paddss.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | paddss.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
6 | 4, 5 | psubssat 37695 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ 𝐴) |
7 | 6 | 3ad2antr3 1188 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑍 ⊆ 𝐴) |
8 | paddss.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
9 | 4, 8 | paddssw1 37784 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) |
10 | 1, 2, 3, 7, 9 | syl13anc 1370 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) |
11 | 5, 8 | paddidm 37782 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆) → (𝑍 + 𝑍) = 𝑍) |
12 | 11 | 3ad2antr3 1188 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑍 + 𝑍) = 𝑍) |
13 | 12 | sseq2d 3949 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 + 𝑌) ⊆ (𝑍 + 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) |
14 | 10, 13 | sylibd 238 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ 𝑍)) |
15 | 4, 8 | paddssw2 37785 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) |
16 | 1, 2, 3, 7, 15 | syl13anc 1370 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) |
17 | 14, 16 | impbid 211 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Atomscatm 37204 PSubSpcpsubsp 37437 +𝑃cpadd 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-psubsp 37444 df-padd 37737 |
This theorem is referenced by: pmodlem1 37787 pclunN 37839 osumcllem1N 37897 |
Copyright terms: Public domain | W3C validator |