| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss | Structured version Visualization version GIF version | ||
| Description: Subset law for projective subspace sum. (unss 4170 analog.) (Contributed by NM, 7-Mar-2012.) |
| Ref | Expression |
|---|---|
| paddss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| paddss.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| paddss.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddss | ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝐾 ∈ 𝐵) | |
| 2 | simpr1 1195 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑋 ⊆ 𝐴) | |
| 3 | simpr2 1196 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑌 ⊆ 𝐴) | |
| 4 | paddss.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | paddss.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 6 | 4, 5 | psubssat 39778 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ 𝐴) |
| 7 | 6 | 3ad2antr3 1191 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑍 ⊆ 𝐴) |
| 8 | paddss.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
| 9 | 4, 8 | paddssw1 39867 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) |
| 10 | 1, 2, 3, 7, 9 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) |
| 11 | 5, 8 | paddidm 39865 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆) → (𝑍 + 𝑍) = 𝑍) |
| 12 | 11 | 3ad2antr3 1191 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑍 + 𝑍) = 𝑍) |
| 13 | 12 | sseq2d 3996 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 + 𝑌) ⊆ (𝑍 + 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) |
| 14 | 10, 13 | sylibd 239 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ 𝑍)) |
| 15 | 4, 8 | paddssw2 39868 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) |
| 16 | 1, 2, 3, 7, 15 | syl13anc 1374 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) |
| 17 | 14, 16 | impbid 212 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Atomscatm 39286 PSubSpcpsubsp 39520 +𝑃cpadd 39819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-psubsp 39527 df-padd 39820 |
| This theorem is referenced by: pmodlem1 39870 pclunN 39922 osumcllem1N 39980 |
| Copyright terms: Public domain | W3C validator |