Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss Structured version   Visualization version   GIF version

Theorem paddss 37140
Description: Subset law for projective subspace sum. (unss 4114 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
paddss.a 𝐴 = (Atoms‘𝐾)
paddss.s 𝑆 = (PSubSp‘𝐾)
paddss.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → ((𝑋𝑍𝑌𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍))

Proof of Theorem paddss
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝐾𝐵)
2 simpr1 1191 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑋𝐴)
3 simpr2 1192 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑌𝐴)
4 paddss.a . . . . . 6 𝐴 = (Atoms‘𝐾)
5 paddss.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
64, 5psubssat 37049 . . . . 5 ((𝐾𝐵𝑍𝑆) → 𝑍𝐴)
763ad2antr3 1187 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑍𝐴)
8 paddss.p . . . . 5 + = (+𝑃𝐾)
94, 8paddssw1 37138 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋𝑍𝑌𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍)))
101, 2, 3, 7, 9syl13anc 1369 . . 3 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → ((𝑋𝑍𝑌𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍)))
115, 8paddidm 37136 . . . . 5 ((𝐾𝐵𝑍𝑆) → (𝑍 + 𝑍) = 𝑍)
12113ad2antr3 1187 . . . 4 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑍 + 𝑍) = 𝑍)
1312sseq2d 3950 . . 3 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → ((𝑋 + 𝑌) ⊆ (𝑍 + 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍))
1410, 13sylibd 242 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → ((𝑋𝑍𝑌𝑍) → (𝑋 + 𝑌) ⊆ 𝑍))
154, 8paddssw2 37139 . . 3 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))
161, 2, 3, 7, 15syl13anc 1369 . 2 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋𝑍𝑌𝑍)))
1714, 16impbid 215 1 ((𝐾𝐵 ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → ((𝑋𝑍𝑌𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wss 3884  cfv 6328  (class class class)co 7139  Atomscatm 36558  PSubSpcpsubsp 36791  +𝑃cpadd 37090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-psubsp 36798  df-padd 37091
This theorem is referenced by:  pmodlem1  37141  pclunN  37193  osumcllem1N  37251
  Copyright terms: Public domain W3C validator