|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddss | Structured version Visualization version GIF version | ||
| Description: Subset law for projective subspace sum. (unss 4189 analog.) (Contributed by NM, 7-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| paddss.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| paddss.s | ⊢ 𝑆 = (PSubSp‘𝐾) | 
| paddss.p | ⊢ + = (+𝑃‘𝐾) | 
| Ref | Expression | 
|---|---|
| paddss | ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝐾 ∈ 𝐵) | |
| 2 | simpr1 1194 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑋 ⊆ 𝐴) | |
| 3 | simpr2 1195 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑌 ⊆ 𝐴) | |
| 4 | paddss.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | paddss.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 6 | 4, 5 | psubssat 39757 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ 𝐴) | 
| 7 | 6 | 3ad2antr3 1190 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑍 ⊆ 𝐴) | 
| 8 | paddss.p | . . . . 5 ⊢ + = (+𝑃‘𝐾) | |
| 9 | 4, 8 | paddssw1 39846 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) | 
| 10 | 1, 2, 3, 7, 9 | syl13anc 1373 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) | 
| 11 | 5, 8 | paddidm 39844 | . . . . 5 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆) → (𝑍 + 𝑍) = 𝑍) | 
| 12 | 11 | 3ad2antr3 1190 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑍 + 𝑍) = 𝑍) | 
| 13 | 12 | sseq2d 4015 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 + 𝑌) ⊆ (𝑍 + 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) | 
| 14 | 10, 13 | sylibd 239 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ 𝑍)) | 
| 15 | 4, 8 | paddssw2 39847 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) | 
| 16 | 1, 2, 3, 7, 15 | syl13anc 1373 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) | 
| 17 | 14, 16 | impbid 212 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Atomscatm 39265 PSubSpcpsubsp 39499 +𝑃cpadd 39798 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-psubsp 39506 df-padd 39799 | 
| This theorem is referenced by: pmodlem1 39849 pclunN 39901 osumcllem1N 39959 | 
| Copyright terms: Public domain | W3C validator |