Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod1i Structured version   Visualization version   GIF version

Theorem pmod1i 39849
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod1i ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))

Proof of Theorem pmod1i
StepHypRef Expression
1 eqid 2730 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2730 . . . . 5 (join‘𝐾) = (join‘𝐾)
3 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 pmod.s . . . . 5 𝑆 = (PSubSp‘𝐾)
5 pmod.p . . . . 5 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmodlem2 39848 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
763expa 1118 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
8 inss1 4203 . . . . 5 (𝑌𝑍) ⊆ 𝑌
9 simpll 766 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
10 simplr2 1217 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑌𝐴)
11 simplr1 1216 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑋𝐴)
123, 5paddss2 39819 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
139, 10, 11, 12syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
148, 13mpi 20 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌))
15 simpl 482 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝐾 ∈ HL)
163, 4psubssat 39755 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍𝐴)
17163ad2antr3 1191 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑍𝐴)
18 simpr2 1196 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑌𝐴)
19 ssinss1 4212 . . . . . . . 8 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
2018, 19syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑌𝑍) ⊆ 𝐴)
213, 5paddss1 39818 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2215, 17, 20, 21syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2322imp 406 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍)))
24 simplr3 1218 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝑆)
259, 24, 16syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝐴)
26 inss2 4204 . . . . . . . 8 (𝑌𝑍) ⊆ 𝑍
273, 5paddss2 39819 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → ((𝑌𝑍) ⊆ 𝑍 → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍)))
2826, 27mpi 20 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
299, 25, 25, 28syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
304, 5paddidm 39842 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → (𝑍 + 𝑍) = 𝑍)
319, 24, 30syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + 𝑍) = 𝑍)
3229, 31sseqtrd 3986 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ 𝑍)
3323, 32sstrd 3960 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ 𝑍)
3414, 33ssind 4207 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ ((𝑋 + 𝑌) ∩ 𝑍))
357, 34eqssd 3967 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍)))
3635ex 412 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  lecple 17234  joincjn 18279  Atomscatm 39263  HLchlt 39350  PSubSpcpsubsp 39497  +𝑃cpadd 39796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-padd 39797
This theorem is referenced by:  pmod2iN  39850  pmodN  39851  pmodl42N  39852  hlmod1i  39857
  Copyright terms: Public domain W3C validator