Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod1i Structured version   Visualization version   GIF version

Theorem pmod1i 37789
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod1i ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))

Proof of Theorem pmod1i
StepHypRef Expression
1 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2738 . . . . 5 (join‘𝐾) = (join‘𝐾)
3 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 pmod.s . . . . 5 𝑆 = (PSubSp‘𝐾)
5 pmod.p . . . . 5 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmodlem2 37788 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
763expa 1116 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
8 inss1 4159 . . . . 5 (𝑌𝑍) ⊆ 𝑌
9 simpll 763 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
10 simplr2 1214 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑌𝐴)
11 simplr1 1213 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑋𝐴)
123, 5paddss2 37759 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
139, 10, 11, 12syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
148, 13mpi 20 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌))
15 simpl 482 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝐾 ∈ HL)
163, 4psubssat 37695 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍𝐴)
17163ad2antr3 1188 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑍𝐴)
18 simpr2 1193 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑌𝐴)
19 ssinss1 4168 . . . . . . . 8 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
2018, 19syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑌𝑍) ⊆ 𝐴)
213, 5paddss1 37758 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2215, 17, 20, 21syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2322imp 406 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍)))
24 simplr3 1215 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝑆)
259, 24, 16syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝐴)
26 inss2 4160 . . . . . . . 8 (𝑌𝑍) ⊆ 𝑍
273, 5paddss2 37759 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → ((𝑌𝑍) ⊆ 𝑍 → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍)))
2826, 27mpi 20 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
299, 25, 25, 28syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
304, 5paddidm 37782 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → (𝑍 + 𝑍) = 𝑍)
319, 24, 30syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + 𝑍) = 𝑍)
3229, 31sseqtrd 3957 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ 𝑍)
3323, 32sstrd 3927 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ 𝑍)
3414, 33ssind 4163 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ ((𝑋 + 𝑌) ∩ 𝑍))
357, 34eqssd 3934 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍)))
3635ex 412 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291  PSubSpcpsubsp 37437  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-padd 37737
This theorem is referenced by:  pmod2iN  37790  pmodN  37791  pmodl42N  37792  hlmod1i  37797
  Copyright terms: Public domain W3C validator