Proof of Theorem pmod1i
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
| 2 | | eqid 2736 |
. . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) |
| 3 | | pmod.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 4 | | pmod.s |
. . . . 5
⊢ 𝑆 = (PSubSp‘𝐾) |
| 5 | | pmod.p |
. . . . 5
⊢ + =
(+𝑃‘𝐾) |
| 6 | 1, 2, 3, 4, 5 | pmodlem2 39871 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) |
| 7 | 6 | 3expa 1118 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) |
| 8 | | inss1 4217 |
. . . . 5
⊢ (𝑌 ∩ 𝑍) ⊆ 𝑌 |
| 9 | | simpll 766 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝐾 ∈ HL) |
| 10 | | simplr2 1217 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑌 ⊆ 𝐴) |
| 11 | | simplr1 1216 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ⊆ 𝐴) |
| 12 | 3, 5 | paddss2 39842 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑌 ∩ 𝑍) ⊆ 𝑌 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑋 + 𝑌))) |
| 13 | 9, 10, 11, 12 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → ((𝑌 ∩ 𝑍) ⊆ 𝑌 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑋 + 𝑌))) |
| 14 | 8, 13 | mpi 20 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑋 + 𝑌)) |
| 15 | | simpl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝐾 ∈ HL) |
| 16 | 3, 4 | psubssat 39778 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ 𝐴) |
| 17 | 16 | 3ad2antr3 1191 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑍 ⊆ 𝐴) |
| 18 | | simpr2 1196 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑌 ⊆ 𝐴) |
| 19 | | ssinss1 4226 |
. . . . . . . 8
⊢ (𝑌 ⊆ 𝐴 → (𝑌 ∩ 𝑍) ⊆ 𝐴) |
| 20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑌 ∩ 𝑍) ⊆ 𝐴) |
| 21 | 3, 5 | paddss1 39841 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ (𝑌 ∩ 𝑍) ⊆ 𝐴) → (𝑋 ⊆ 𝑍 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + (𝑌 ∩ 𝑍)))) |
| 22 | 15, 17, 20, 21 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + (𝑌 ∩ 𝑍)))) |
| 23 | 22 | imp 406 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + (𝑌 ∩ 𝑍))) |
| 24 | | simplr3 1218 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑍 ∈ 𝑆) |
| 25 | 9, 24, 16 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑍 ⊆ 𝐴) |
| 26 | | inss2 4218 |
. . . . . . . 8
⊢ (𝑌 ∩ 𝑍) ⊆ 𝑍 |
| 27 | 3, 5 | paddss2 39842 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑌 ∩ 𝑍) ⊆ 𝑍 → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + 𝑍))) |
| 28 | 26, 27 | mpi 20 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + 𝑍)) |
| 29 | 9, 25, 25, 28 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + 𝑍)) |
| 30 | 4, 5 | paddidm 39865 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → (𝑍 + 𝑍) = 𝑍) |
| 31 | 9, 24, 30 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑍 + 𝑍) = 𝑍) |
| 32 | 29, 31 | sseqtrd 4000 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ 𝑍) |
| 33 | 23, 32 | sstrd 3974 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ 𝑍) |
| 34 | 14, 33 | ssind 4221 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ ((𝑋 + 𝑌) ∩ 𝑍)) |
| 35 | 7, 34 | eqssd 3981 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍))) |
| 36 | 35 | ex 412 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍)))) |