Proof of Theorem pmod1i
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 2 |  | eqid 2736 | . . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 3 |  | pmod.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | pmod.s | . . . . 5
⊢ 𝑆 = (PSubSp‘𝐾) | 
| 5 |  | pmod.p | . . . . 5
⊢  + =
(+𝑃‘𝐾) | 
| 6 | 1, 2, 3, 4, 5 | pmodlem2 39850 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 7 | 6 | 3expa 1118 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | 
| 8 |  | inss1 4236 | . . . . 5
⊢ (𝑌 ∩ 𝑍) ⊆ 𝑌 | 
| 9 |  | simpll 766 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝐾 ∈ HL) | 
| 10 |  | simplr2 1216 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑌 ⊆ 𝐴) | 
| 11 |  | simplr1 1215 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ⊆ 𝐴) | 
| 12 | 3, 5 | paddss2 39821 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑌 ∩ 𝑍) ⊆ 𝑌 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑋 + 𝑌))) | 
| 13 | 9, 10, 11, 12 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → ((𝑌 ∩ 𝑍) ⊆ 𝑌 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑋 + 𝑌))) | 
| 14 | 8, 13 | mpi 20 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑋 + 𝑌)) | 
| 15 |  | simpl 482 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝐾 ∈ HL) | 
| 16 | 3, 4 | psubssat 39757 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ 𝐴) | 
| 17 | 16 | 3ad2antr3 1190 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑍 ⊆ 𝐴) | 
| 18 |  | simpr2 1195 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → 𝑌 ⊆ 𝐴) | 
| 19 |  | ssinss1 4245 | . . . . . . . 8
⊢ (𝑌 ⊆ 𝐴 → (𝑌 ∩ 𝑍) ⊆ 𝐴) | 
| 20 | 18, 19 | syl 17 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑌 ∩ 𝑍) ⊆ 𝐴) | 
| 21 | 3, 5 | paddss1 39820 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ (𝑌 ∩ 𝑍) ⊆ 𝐴) → (𝑋 ⊆ 𝑍 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + (𝑌 ∩ 𝑍)))) | 
| 22 | 15, 17, 20, 21 | syl3anc 1372 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + (𝑌 ∩ 𝑍)))) | 
| 23 | 22 | imp 406 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + (𝑌 ∩ 𝑍))) | 
| 24 |  | simplr3 1217 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑍 ∈ 𝑆) | 
| 25 | 9, 24, 16 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → 𝑍 ⊆ 𝐴) | 
| 26 |  | inss2 4237 | . . . . . . . 8
⊢ (𝑌 ∩ 𝑍) ⊆ 𝑍 | 
| 27 | 3, 5 | paddss2 39821 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑌 ∩ 𝑍) ⊆ 𝑍 → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + 𝑍))) | 
| 28 | 26, 27 | mpi 20 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + 𝑍)) | 
| 29 | 9, 25, 25, 28 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ (𝑍 + 𝑍)) | 
| 30 | 4, 5 | paddidm 39844 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → (𝑍 + 𝑍) = 𝑍) | 
| 31 | 9, 24, 30 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑍 + 𝑍) = 𝑍) | 
| 32 | 29, 31 | sseqtrd 4019 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑍 + (𝑌 ∩ 𝑍)) ⊆ 𝑍) | 
| 33 | 23, 32 | sstrd 3993 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ 𝑍) | 
| 34 | 14, 33 | ssind 4240 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → (𝑋 + (𝑌 ∩ 𝑍)) ⊆ ((𝑋 + 𝑌) ∩ 𝑍)) | 
| 35 | 7, 34 | eqssd 4000 | . 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍))) | 
| 36 | 35 | ex 412 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍)))) |