Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod1i Structured version   Visualization version   GIF version

Theorem pmod1i 37862
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod1i ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))

Proof of Theorem pmod1i
StepHypRef Expression
1 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2738 . . . . 5 (join‘𝐾) = (join‘𝐾)
3 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 pmod.s . . . . 5 𝑆 = (PSubSp‘𝐾)
5 pmod.p . . . . 5 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmodlem2 37861 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
763expa 1117 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
8 inss1 4162 . . . . 5 (𝑌𝑍) ⊆ 𝑌
9 simpll 764 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
10 simplr2 1215 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑌𝐴)
11 simplr1 1214 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑋𝐴)
123, 5paddss2 37832 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
139, 10, 11, 12syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
148, 13mpi 20 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌))
15 simpl 483 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝐾 ∈ HL)
163, 4psubssat 37768 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍𝐴)
17163ad2antr3 1189 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑍𝐴)
18 simpr2 1194 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑌𝐴)
19 ssinss1 4171 . . . . . . . 8 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
2018, 19syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑌𝑍) ⊆ 𝐴)
213, 5paddss1 37831 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2215, 17, 20, 21syl3anc 1370 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2322imp 407 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍)))
24 simplr3 1216 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝑆)
259, 24, 16syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝐴)
26 inss2 4163 . . . . . . . 8 (𝑌𝑍) ⊆ 𝑍
273, 5paddss2 37832 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → ((𝑌𝑍) ⊆ 𝑍 → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍)))
2826, 27mpi 20 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
299, 25, 25, 28syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
304, 5paddidm 37855 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → (𝑍 + 𝑍) = 𝑍)
319, 24, 30syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + 𝑍) = 𝑍)
3229, 31sseqtrd 3961 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ 𝑍)
3323, 32sstrd 3931 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ 𝑍)
3414, 33ssind 4166 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ ((𝑋 + 𝑌) ∩ 𝑍))
357, 34eqssd 3938 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍)))
3635ex 413 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  PSubSpcpsubsp 37510  +𝑃cpadd 37809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-padd 37810
This theorem is referenced by:  pmod2iN  37863  pmodN  37864  pmodl42N  37865  hlmod1i  37870
  Copyright terms: Public domain W3C validator