Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmod1i Structured version   Visualization version   GIF version

Theorem pmod1i 38657
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmod1i ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))

Proof of Theorem pmod1i
StepHypRef Expression
1 eqid 2733 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2733 . . . . 5 (join‘𝐾) = (join‘𝐾)
3 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 pmod.s . . . . 5 𝑆 = (PSubSp‘𝐾)
5 pmod.p . . . . 5 + = (+𝑃𝐾)
61, 2, 3, 4, 5pmodlem2 38656 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
763expa 1119 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
8 inss1 4227 . . . . 5 (𝑌𝑍) ⊆ 𝑌
9 simpll 766 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
10 simplr2 1217 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑌𝐴)
11 simplr1 1216 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑋𝐴)
123, 5paddss2 38627 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝐴) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
139, 10, 11, 12syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑌𝑍) ⊆ 𝑌 → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌)))
148, 13mpi 20 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑋 + 𝑌))
15 simpl 484 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝐾 ∈ HL)
163, 4psubssat 38563 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝑆) → 𝑍𝐴)
17163ad2antr3 1191 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑍𝐴)
18 simpr2 1196 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → 𝑌𝐴)
19 ssinss1 4236 . . . . . . . 8 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
2018, 19syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑌𝑍) ⊆ 𝐴)
213, 5paddss1 38626 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2215, 17, 20, 21syl3anc 1372 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍))))
2322imp 408 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ (𝑍 + (𝑌𝑍)))
24 simplr3 1218 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝑆)
259, 24, 16syl2anc 585 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → 𝑍𝐴)
26 inss2 4228 . . . . . . . 8 (𝑌𝑍) ⊆ 𝑍
273, 5paddss2 38627 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → ((𝑌𝑍) ⊆ 𝑍 → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍)))
2826, 27mpi 20 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝐴𝑍𝐴) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
299, 25, 25, 28syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ (𝑍 + 𝑍))
304, 5paddidm 38650 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑍𝑆) → (𝑍 + 𝑍) = 𝑍)
319, 24, 30syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + 𝑍) = 𝑍)
3229, 31sseqtrd 4021 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑍 + (𝑌𝑍)) ⊆ 𝑍)
3323, 32sstrd 3991 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ 𝑍)
3414, 33ssind 4231 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → (𝑋 + (𝑌𝑍)) ⊆ ((𝑋 + 𝑌) ∩ 𝑍))
357, 34eqssd 3998 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍)))
3635ex 414 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆)) → (𝑋𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3946  wss 3947  cfv 6540  (class class class)co 7404  lecple 17200  joincjn 18260  Atomscatm 38071  HLchlt 38158  PSubSpcpsubsp 38305  +𝑃cpadd 38604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159  df-psubsp 38312  df-padd 38605
This theorem is referenced by:  pmod2iN  38658  pmodN  38659  pmodl42N  38660  hlmod1i  38665
  Copyright terms: Public domain W3C validator