| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39730. Atom 𝐷 belongs to the axis of perspectivity 𝑋. (Contributed by NM, 19-Jul-2012.) |
| Ref | Expression |
|---|---|
| dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalemc.l | ⊢ ≤ = (le‘𝐾) |
| dalemc.j | ⊢ ∨ = (join‘𝐾) |
| dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem10.m | ⊢ ∧ = (meet‘𝐾) |
| dalem10.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
| dalem10.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| dalem10.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
| dalem10.x | ⊢ 𝑋 = (𝑌 ∧ 𝑍) |
| dalem10.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
| Ref | Expression |
|---|---|
| dalem10 | ⊢ (𝜑 → 𝐷 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 2 | 1 | dalemkelat 39618 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 3 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 4 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 3, 4 | dalempjqeb 39639 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 6 | 1, 4 | dalemreb 39635 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 8 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 9 | 7, 8, 3 | latlej1 18407 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 10 | 2, 5, 6, 9 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 11 | 1, 3, 4 | dalemsjteb 39640 | . . . 4 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 12 | 1, 4 | dalemueb 39638 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
| 13 | 7, 8, 3 | latlej1 18407 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 14 | 2, 11, 12, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 15 | dalem10.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 16 | dalem10.o | . . . . . 6 ⊢ 𝑂 = (LPlanes‘𝐾) | |
| 17 | 1, 16 | dalemyeb 39643 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
| 18 | 15, 17 | eqeltrrid 2833 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
| 19 | dalem10.z | . . . . 5 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
| 20 | 1 | dalemzeo 39627 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
| 21 | 7, 16 | lplnbase 39528 | . . . . . 6 ⊢ (𝑍 ∈ 𝑂 → 𝑍 ∈ (Base‘𝐾)) |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐾)) |
| 23 | 19, 22 | eqeltrrid 2833 | . . . 4 ⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ (Base‘𝐾)) |
| 24 | dalem10.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 25 | 7, 8, 24 | latmlem12 18430 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)))) |
| 26 | 2, 5, 18, 11, 23, 25 | syl122anc 1381 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)))) |
| 27 | 10, 14, 26 | mp2and 699 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈))) |
| 28 | dalem10.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
| 29 | dalem10.x | . . 3 ⊢ 𝑋 = (𝑌 ∧ 𝑍) | |
| 30 | 15, 19 | oveq12i 7399 | . . 3 ⊢ (𝑌 ∧ 𝑍) = (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 31 | 29, 30 | eqtri 2752 | . 2 ⊢ 𝑋 = (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 32 | 27, 28, 31 | 3brtr4g 5141 | 1 ⊢ (𝜑 → 𝐷 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 meetcmee 18273 Latclat 18390 Atomscatm 39256 HLchlt 39343 LPlanesclpl 39486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-poset 18274 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lplanes 39493 |
| This theorem is referenced by: dalem11 39668 dalem16 39673 dalem54 39720 |
| Copyright terms: Public domain | W3C validator |