![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem10 | Structured version Visualization version GIF version |
Description: Lemma for dath 39693. Atom 𝐷 belongs to the axis of perspectivity 𝑋. (Contributed by NM, 19-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem10.m | ⊢ ∧ = (meet‘𝐾) |
dalem10.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem10.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem10.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem10.x | ⊢ 𝑋 = (𝑌 ∧ 𝑍) |
dalem10.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
Ref | Expression |
---|---|
dalem10 | ⊢ (𝜑 → 𝐷 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 39581 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
4 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 3, 4 | dalempjqeb 39602 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
6 | 1, 4 | dalemreb 39598 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
7 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8, 3 | latlej1 18518 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
10 | 2, 5, 6, 9 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
11 | 1, 3, 4 | dalemsjteb 39603 | . . . 4 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
12 | 1, 4 | dalemueb 39601 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
13 | 7, 8, 3 | latlej1 18518 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
14 | 2, 11, 12, 13 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
15 | dalem10.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
16 | dalem10.o | . . . . . 6 ⊢ 𝑂 = (LPlanes‘𝐾) | |
17 | 1, 16 | dalemyeb 39606 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
18 | 15, 17 | eqeltrrid 2849 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
19 | dalem10.z | . . . . 5 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
20 | 1 | dalemzeo 39590 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
21 | 7, 16 | lplnbase 39491 | . . . . . 6 ⊢ (𝑍 ∈ 𝑂 → 𝑍 ∈ (Base‘𝐾)) |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐾)) |
23 | 19, 22 | eqeltrrid 2849 | . . . 4 ⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ (Base‘𝐾)) |
24 | dalem10.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
25 | 7, 8, 24 | latmlem12 18541 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)))) |
26 | 2, 5, 18, 11, 23, 25 | syl122anc 1379 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)))) |
27 | 10, 14, 26 | mp2and 698 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈))) |
28 | dalem10.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
29 | dalem10.x | . . 3 ⊢ 𝑋 = (𝑌 ∧ 𝑍) | |
30 | 15, 19 | oveq12i 7460 | . . 3 ⊢ (𝑌 ∧ 𝑍) = (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
31 | 29, 30 | eqtri 2768 | . 2 ⊢ 𝑋 = (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
32 | 27, 28, 31 | 3brtr4g 5200 | 1 ⊢ (𝜑 → 𝐷 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 meetcmee 18382 Latclat 18501 Atomscatm 39219 HLchlt 39306 LPlanesclpl 39449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-lplanes 39456 |
This theorem is referenced by: dalem11 39631 dalem16 39636 dalem54 39683 |
Copyright terms: Public domain | W3C validator |