MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem4 Structured version   Visualization version   GIF version

Theorem ostth2lem4 27657
Description: Lemma for ostth2 27658. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
ostth2.8 𝑈 = ((log‘𝑁) / (log‘𝑀))
Assertion
Ref Expression
ostth2lem4 (𝜑 → (1 < (𝐹𝑀) ∧ 𝑅𝑆))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑈   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem ostth2lem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ostth2.3 . . . . 5 (𝜑 → 1 < (𝐹𝑁))
2 1re 11260 . . . . . 6 1 ∈ ℝ
3 ostth.1 . . . . . . 7 (𝜑𝐹𝐴)
4 ostth2.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘2))
5 eluz2b2 12952 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
64, 5sylib 217 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
76simpld 493 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
8 nnq 12993 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
97, 8syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℚ)
10 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
11 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
1211qrngbas 27640 . . . . . . . 8 ℚ = (Base‘𝑄)
1310, 12abvcl 20744 . . . . . . 7 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
143, 9, 13syl2anc 582 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ)
15 ltnle 11339 . . . . . 6 ((1 ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (1 < (𝐹𝑁) ↔ ¬ (𝐹𝑁) ≤ 1))
162, 14, 15sylancr 585 . . . . 5 (𝜑 → (1 < (𝐹𝑁) ↔ ¬ (𝐹𝑁) ≤ 1))
171, 16mpbid 231 . . . 4 (𝜑 → ¬ (𝐹𝑁) ≤ 1)
18 ostth2.7 . . . . . . . . . . . . 13 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
19 ostth2.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘2))
20 eluz2b2 12952 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2119, 20sylib 217 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2221simpld 493 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
23 nnq 12993 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℚ)
2510, 12abvcl 20744 . . . . . . . . . . . . . . 15 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
263, 24, 25syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑀) ∈ ℝ)
27 ifcl 4577 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
282, 26, 27sylancr 585 . . . . . . . . . . . . 13 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2918, 28eqeltrid 2829 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
30 0red 11263 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
312a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
32 0lt1 11782 . . . . . . . . . . . . . 14 0 < 1
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
34 max2 13215 . . . . . . . . . . . . . . 15 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3526, 2, 34sylancl 584 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3635, 18breqtrrdi 5194 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑇)
3730, 31, 29, 33, 36ltletrd 11420 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑇)
3829, 37elrpd 13062 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ+)
39 ostth2.8 . . . . . . . . . . . 12 𝑈 = ((log‘𝑁) / (log‘𝑀))
407nnrpd 13063 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
4140relogcld 26642 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑁) ∈ ℝ)
4222nnred 12274 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
4321simprd 494 . . . . . . . . . . . . . 14 (𝜑 → 1 < 𝑀)
4442, 43rplogcld 26648 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑀) ∈ ℝ+)
4541, 44rerpdivcld 13096 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ)
4639, 45eqeltrid 2829 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℝ)
4738, 46rpcxpcld 26752 . . . . . . . . . 10 (𝜑 → (𝑇𝑐𝑈) ∈ ℝ+)
4814, 47rerpdivcld 13096 . . . . . . . . 9 (𝜑 → ((𝐹𝑁) / (𝑇𝑐𝑈)) ∈ ℝ)
4942, 29remulcld 11290 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑇) ∈ ℝ)
50 peano2re 11433 . . . . . . . . . . 11 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
5146, 50syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 + 1) ∈ ℝ)
5249, 51remulcld 11290 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ)
53 padic.j . . . . . . . . . 10 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
54 ostth.k . . . . . . . . . 10 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
55 ostth2.4 . . . . . . . . . 10 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
56 ostth2.6 . . . . . . . . . 10 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
5711, 10, 53, 54, 3, 4, 1, 55, 19, 56, 18, 39ostth2lem3 27656 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑛) ≤ (𝑛 · ((𝑀 · 𝑇) · (𝑈 + 1))))
5848, 52, 57ostth2lem1 27639 . . . . . . . 8 (𝜑 → ((𝐹𝑁) / (𝑇𝑐𝑈)) ≤ 1)
5914, 31, 47ledivmuld 13118 . . . . . . . 8 (𝜑 → (((𝐹𝑁) / (𝑇𝑐𝑈)) ≤ 1 ↔ (𝐹𝑁) ≤ ((𝑇𝑐𝑈) · 1)))
6058, 59mpbid 231 . . . . . . 7 (𝜑 → (𝐹𝑁) ≤ ((𝑇𝑐𝑈) · 1))
6147rpcnd 13067 . . . . . . . 8 (𝜑 → (𝑇𝑐𝑈) ∈ ℂ)
6261mulridd 11277 . . . . . . 7 (𝜑 → ((𝑇𝑐𝑈) · 1) = (𝑇𝑐𝑈))
6360, 62breqtrd 5178 . . . . . 6 (𝜑 → (𝐹𝑁) ≤ (𝑇𝑐𝑈))
6463adantr 479 . . . . 5 ((𝜑 ∧ (𝐹𝑀) ≤ 1) → (𝐹𝑁) ≤ (𝑇𝑐𝑈))
65 iftrue 4538 . . . . . . . 8 ((𝐹𝑀) ≤ 1 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) = 1)
6618, 65eqtrid 2777 . . . . . . 7 ((𝐹𝑀) ≤ 1 → 𝑇 = 1)
6766oveq1d 7438 . . . . . 6 ((𝐹𝑀) ≤ 1 → (𝑇𝑐𝑈) = (1↑𝑐𝑈))
6846recnd 11288 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
69681cxpd 26726 . . . . . 6 (𝜑 → (1↑𝑐𝑈) = 1)
7067, 69sylan9eqr 2787 . . . . 5 ((𝜑 ∧ (𝐹𝑀) ≤ 1) → (𝑇𝑐𝑈) = 1)
7164, 70breqtrd 5178 . . . 4 ((𝜑 ∧ (𝐹𝑀) ≤ 1) → (𝐹𝑁) ≤ 1)
7217, 71mtand 814 . . 3 (𝜑 → ¬ (𝐹𝑀) ≤ 1)
73 ltnle 11339 . . . 4 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → (1 < (𝐹𝑀) ↔ ¬ (𝐹𝑀) ≤ 1))
742, 26, 73sylancr 585 . . 3 (𝜑 → (1 < (𝐹𝑀) ↔ ¬ (𝐹𝑀) ≤ 1))
7572, 74mpbird 256 . 2 (𝜑 → 1 < (𝐹𝑀))
7630, 31, 14, 33, 1lttrd 11421 . . . . . . . . 9 (𝜑 → 0 < (𝐹𝑁))
7714, 76elrpd 13062 . . . . . . . 8 (𝜑 → (𝐹𝑁) ∈ ℝ+)
7877reeflogd 26643 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
79 iffalse 4541 . . . . . . . . . . 11 (¬ (𝐹𝑀) ≤ 1 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) = (𝐹𝑀))
8018, 79eqtrid 2777 . . . . . . . . . 10 (¬ (𝐹𝑀) ≤ 1 → 𝑇 = (𝐹𝑀))
8172, 80syl 17 . . . . . . . . 9 (𝜑𝑇 = (𝐹𝑀))
8281oveq1d 7438 . . . . . . . 8 (𝜑 → (𝑇𝑐𝑈) = ((𝐹𝑀)↑𝑐𝑈))
8326recnd 11288 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℂ)
8430, 31, 26, 33, 75lttrd 11421 . . . . . . . . . . 11 (𝜑 → 0 < (𝐹𝑀))
8526, 84elrpd 13062 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ+)
8685rpne0d 13070 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ≠ 0)
8783, 86, 68cxpefd 26731 . . . . . . . 8 (𝜑 → ((𝐹𝑀)↑𝑐𝑈) = (exp‘(𝑈 · (log‘(𝐹𝑀)))))
8882, 87eqtr2d 2766 . . . . . . 7 (𝜑 → (exp‘(𝑈 · (log‘(𝐹𝑀)))) = (𝑇𝑐𝑈))
8963, 78, 883brtr4d 5184 . . . . . 6 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹𝑀)))))
9077relogcld 26642 . . . . . . 7 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
9185relogcld 26642 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑀)) ∈ ℝ)
9246, 91remulcld 11290 . . . . . . 7 (𝜑 → (𝑈 · (log‘(𝐹𝑀))) ∈ ℝ)
93 efle 16115 . . . . . . 7 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (𝑈 · (log‘(𝐹𝑀))) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (𝑈 · (log‘(𝐹𝑀))) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹𝑀))))))
9490, 92, 93syl2anc 582 . . . . . 6 (𝜑 → ((log‘(𝐹𝑁)) ≤ (𝑈 · (log‘(𝐹𝑀))) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹𝑀))))))
9589, 94mpbird 256 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ (𝑈 · (log‘(𝐹𝑀))))
9641recnd 11288 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℂ)
9791recnd 11288 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑀)) ∈ ℂ)
9844rpcnd 13067 . . . . . . . 8 (𝜑 → (log‘𝑀) ∈ ℂ)
9944rpne0d 13070 . . . . . . . 8 (𝜑 → (log‘𝑀) ≠ 0)
10096, 97, 98, 99div12d 12073 . . . . . . 7 (𝜑 → ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))) = ((log‘(𝐹𝑀)) · ((log‘𝑁) / (log‘𝑀))))
10139oveq2i 7434 . . . . . . 7 ((log‘(𝐹𝑀)) · 𝑈) = ((log‘(𝐹𝑀)) · ((log‘𝑁) / (log‘𝑀)))
102100, 101eqtr4di 2783 . . . . . 6 (𝜑 → ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))) = ((log‘(𝐹𝑀)) · 𝑈))
10397, 68mulcomd 11281 . . . . . 6 (𝜑 → ((log‘(𝐹𝑀)) · 𝑈) = (𝑈 · (log‘(𝐹𝑀))))
104102, 103eqtrd 2765 . . . . 5 (𝜑 → ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))) = (𝑈 · (log‘(𝐹𝑀))))
10595, 104breqtrrd 5180 . . . 4 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))))
10691, 44rerpdivcld 13096 . . . . 5 (𝜑 → ((log‘(𝐹𝑀)) / (log‘𝑀)) ∈ ℝ)
1077nnred 12274 . . . . . 6 (𝜑𝑁 ∈ ℝ)
1086simprd 494 . . . . . 6 (𝜑 → 1 < 𝑁)
109107, 108rplogcld 26648 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
11090, 106, 109ledivmuld 13118 . . . 4 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹𝑀)) / (log‘𝑀)) ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀)))))
111105, 110mpbird 256 . . 3 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹𝑀)) / (log‘𝑀)))
112111, 55, 563brtr4g 5186 . 2 (𝜑𝑅𝑆)
11375, 112jca 510 1 (𝜑 → (1 < (𝐹𝑀) ∧ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  ifcif 4532   class class class wbr 5152  cmpt 5235  cfv 6553  (class class class)co 7423  cr 11153  0cc0 11154  1c1 11155   + caddc 11157   · cmul 11159   < clt 11294  cle 11295  -cneg 11491   / cdiv 11917  cn 12259  2c2 12314  cuz 12869  cq 12979  cexp 14076  expce 16058  cprime 16667   pCnt cpc 16833  s cress 17237  AbsValcabv 20736  fldccnfld 21335  logclog 26573  𝑐ccxp 26574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-inf2 9680  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232  ax-addf 11233  ax-mulf 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-supp 8174  df-tpos 8240  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-pm 8857  df-ixp 8926  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-fsupp 9402  df-fi 9450  df-sup 9481  df-inf 9482  df-oi 9549  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-q 12980  df-rp 13024  df-xneg 13141  df-xadd 13142  df-xmul 13143  df-ioo 13377  df-ioc 13378  df-ico 13379  df-icc 13380  df-fz 13534  df-fzo 13677  df-fl 13807  df-mod 13885  df-seq 14017  df-exp 14077  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-ef 16064  df-sin 16066  df-cos 16067  df-pi 16069  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-grp 18926  df-minusg 18927  df-mulg 19057  df-subg 19112  df-cntz 19306  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-cring 20214  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-invr 20365  df-dvr 20378  df-subrng 20523  df-subrg 20548  df-drng 20666  df-abv 20737  df-psmet 21327  df-xmet 21328  df-met 21329  df-bl 21330  df-mopn 21331  df-fbas 21332  df-fg 21333  df-cnfld 21336  df-top 22879  df-topon 22896  df-topsp 22918  df-bases 22932  df-cld 23006  df-ntr 23007  df-cls 23008  df-nei 23085  df-lp 23123  df-perf 23124  df-cn 23214  df-cnp 23215  df-haus 23302  df-tx 23549  df-hmeo 23742  df-fil 23833  df-fm 23925  df-flim 23926  df-flf 23927  df-xms 24309  df-ms 24310  df-tms 24311  df-cncf 24881  df-limc 25878  df-dv 25879  df-log 26575  df-cxp 26576
This theorem is referenced by:  ostth2  27658
  Copyright terms: Public domain W3C validator