| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ostth2.3 | . . . . 5
⊢ (𝜑 → 1 < (𝐹‘𝑁)) | 
| 2 |  | 1re 11261 | . . . . . 6
⊢ 1 ∈
ℝ | 
| 3 |  | ostth.1 | . . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝐴) | 
| 4 |  | ostth2.2 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘2)) | 
| 5 |  | eluz2b2 12963 | . . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | 
| 6 | 4, 5 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | 
| 7 | 6 | simpld 494 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 8 |  | nnq 13004 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) | 
| 9 | 7, 8 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℚ) | 
| 10 |  | qabsabv.a | . . . . . . . 8
⊢ 𝐴 = (AbsVal‘𝑄) | 
| 11 |  | qrng.q | . . . . . . . . 9
⊢ 𝑄 = (ℂfld
↾s ℚ) | 
| 12 | 11 | qrngbas 27663 | . . . . . . . 8
⊢ ℚ =
(Base‘𝑄) | 
| 13 | 10, 12 | abvcl 20817 | . . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ) → (𝐹‘𝑁) ∈ ℝ) | 
| 14 | 3, 9, 13 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) | 
| 15 |  | ltnle 11340 | . . . . . 6
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑁) ∈ ℝ) → (1 < (𝐹‘𝑁) ↔ ¬ (𝐹‘𝑁) ≤ 1)) | 
| 16 | 2, 14, 15 | sylancr 587 | . . . . 5
⊢ (𝜑 → (1 < (𝐹‘𝑁) ↔ ¬ (𝐹‘𝑁) ≤ 1)) | 
| 17 | 1, 16 | mpbid 232 | . . . 4
⊢ (𝜑 → ¬ (𝐹‘𝑁) ≤ 1) | 
| 18 |  | ostth2.7 | . . . . . . . . . . . . 13
⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) | 
| 19 |  | ostth2.5 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘2)) | 
| 20 |  | eluz2b2 12963 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀)) | 
| 21 | 19, 20 | sylib 218 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀)) | 
| 22 | 21 | simpld 494 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 23 |  | nnq 13004 | . . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) | 
| 24 | 22, 23 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℚ) | 
| 25 | 10, 12 | abvcl 20817 | . . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℝ) | 
| 26 | 3, 24, 25 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) | 
| 27 |  | ifcl 4571 | . . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) | 
| 28 | 2, 26, 27 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (𝜑 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) | 
| 29 | 18, 28 | eqeltrid 2845 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℝ) | 
| 30 |  | 0red 11264 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) | 
| 31 | 2 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ) | 
| 32 |  | 0lt1 11785 | . . . . . . . . . . . . . 14
⊢ 0 <
1 | 
| 33 | 32 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 1) | 
| 34 |  | max2 13229 | . . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) | 
| 35 | 26, 2, 34 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) | 
| 36 | 35, 18 | breqtrrdi 5185 | . . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤ 𝑇) | 
| 37 | 30, 31, 29, 33, 36 | ltletrd 11421 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑇) | 
| 38 | 29, 37 | elrpd 13074 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈
ℝ+) | 
| 39 |  | ostth2.8 | . . . . . . . . . . . 12
⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) | 
| 40 | 7 | nnrpd 13075 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
ℝ+) | 
| 41 | 40 | relogcld 26665 | . . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) | 
| 42 | 22 | nnred 12281 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 43 | 21 | simprd 495 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 1 < 𝑀) | 
| 44 | 42, 43 | rplogcld 26671 | . . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝑀) ∈
ℝ+) | 
| 45 | 41, 44 | rerpdivcld 13108 | . . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ) | 
| 46 | 39, 45 | eqeltrid 2845 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ ℝ) | 
| 47 | 38, 46 | rpcxpcld 26775 | . . . . . . . . . 10
⊢ (𝜑 → (𝑇↑𝑐𝑈) ∈
ℝ+) | 
| 48 | 14, 47 | rerpdivcld 13108 | . . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑁) / (𝑇↑𝑐𝑈)) ∈ ℝ) | 
| 49 | 42, 29 | remulcld 11291 | . . . . . . . . . 10
⊢ (𝜑 → (𝑀 · 𝑇) ∈ ℝ) | 
| 50 |  | peano2re 11434 | . . . . . . . . . . 11
⊢ (𝑈 ∈ ℝ → (𝑈 + 1) ∈
ℝ) | 
| 51 | 46, 50 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝑈 + 1) ∈ ℝ) | 
| 52 | 49, 51 | remulcld 11291 | . . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ) | 
| 53 |  | padic.j | . . . . . . . . . 10
⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) | 
| 54 |  | ostth.k | . . . . . . . . . 10
⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) | 
| 55 |  | ostth2.4 | . . . . . . . . . 10
⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) | 
| 56 |  | ostth2.6 | . . . . . . . . . 10
⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) | 
| 57 | 11, 10, 53, 54, 3, 4, 1, 55, 19, 56, 18, 39 | ostth2lem3 27679 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈))↑𝑛) ≤ (𝑛 · ((𝑀 · 𝑇) · (𝑈 + 1)))) | 
| 58 | 48, 52, 57 | ostth2lem1 27662 | . . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑁) / (𝑇↑𝑐𝑈)) ≤ 1) | 
| 59 | 14, 31, 47 | ledivmuld 13130 | . . . . . . . 8
⊢ (𝜑 → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈)) ≤ 1 ↔ (𝐹‘𝑁) ≤ ((𝑇↑𝑐𝑈) · 1))) | 
| 60 | 58, 59 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → (𝐹‘𝑁) ≤ ((𝑇↑𝑐𝑈) · 1)) | 
| 61 | 47 | rpcnd 13079 | . . . . . . . 8
⊢ (𝜑 → (𝑇↑𝑐𝑈) ∈ ℂ) | 
| 62 | 61 | mulridd 11278 | . . . . . . 7
⊢ (𝜑 → ((𝑇↑𝑐𝑈) · 1) = (𝑇↑𝑐𝑈)) | 
| 63 | 60, 62 | breqtrd 5169 | . . . . . 6
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝑇↑𝑐𝑈)) | 
| 64 | 63 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑀) ≤ 1) → (𝐹‘𝑁) ≤ (𝑇↑𝑐𝑈)) | 
| 65 |  | iftrue 4531 | . . . . . . . 8
⊢ ((𝐹‘𝑀) ≤ 1 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) = 1) | 
| 66 | 18, 65 | eqtrid 2789 | . . . . . . 7
⊢ ((𝐹‘𝑀) ≤ 1 → 𝑇 = 1) | 
| 67 | 66 | oveq1d 7446 | . . . . . 6
⊢ ((𝐹‘𝑀) ≤ 1 → (𝑇↑𝑐𝑈) = (1↑𝑐𝑈)) | 
| 68 | 46 | recnd 11289 | . . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℂ) | 
| 69 | 68 | 1cxpd 26749 | . . . . . 6
⊢ (𝜑 →
(1↑𝑐𝑈) = 1) | 
| 70 | 67, 69 | sylan9eqr 2799 | . . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑀) ≤ 1) → (𝑇↑𝑐𝑈) = 1) | 
| 71 | 64, 70 | breqtrd 5169 | . . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑀) ≤ 1) → (𝐹‘𝑁) ≤ 1) | 
| 72 | 17, 71 | mtand 816 | . . 3
⊢ (𝜑 → ¬ (𝐹‘𝑀) ≤ 1) | 
| 73 |  | ltnle 11340 | . . . 4
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → (1 < (𝐹‘𝑀) ↔ ¬ (𝐹‘𝑀) ≤ 1)) | 
| 74 | 2, 26, 73 | sylancr 587 | . . 3
⊢ (𝜑 → (1 < (𝐹‘𝑀) ↔ ¬ (𝐹‘𝑀) ≤ 1)) | 
| 75 | 72, 74 | mpbird 257 | . 2
⊢ (𝜑 → 1 < (𝐹‘𝑀)) | 
| 76 | 30, 31, 14, 33, 1 | lttrd 11422 | . . . . . . . . 9
⊢ (𝜑 → 0 < (𝐹‘𝑁)) | 
| 77 | 14, 76 | elrpd 13074 | . . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑁) ∈
ℝ+) | 
| 78 | 77 | reeflogd 26666 | . . . . . . 7
⊢ (𝜑 →
(exp‘(log‘(𝐹‘𝑁))) = (𝐹‘𝑁)) | 
| 79 |  | iffalse 4534 | . . . . . . . . . . 11
⊢ (¬
(𝐹‘𝑀) ≤ 1 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) = (𝐹‘𝑀)) | 
| 80 | 18, 79 | eqtrid 2789 | . . . . . . . . . 10
⊢ (¬
(𝐹‘𝑀) ≤ 1 → 𝑇 = (𝐹‘𝑀)) | 
| 81 | 72, 80 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝑇 = (𝐹‘𝑀)) | 
| 82 | 81 | oveq1d 7446 | . . . . . . . 8
⊢ (𝜑 → (𝑇↑𝑐𝑈) = ((𝐹‘𝑀)↑𝑐𝑈)) | 
| 83 | 26 | recnd 11289 | . . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) | 
| 84 | 30, 31, 26, 33, 75 | lttrd 11422 | . . . . . . . . . . 11
⊢ (𝜑 → 0 < (𝐹‘𝑀)) | 
| 85 | 26, 84 | elrpd 13074 | . . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈
ℝ+) | 
| 86 | 85 | rpne0d 13082 | . . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) ≠ 0) | 
| 87 | 83, 86, 68 | cxpefd 26754 | . . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑀)↑𝑐𝑈) = (exp‘(𝑈 · (log‘(𝐹‘𝑀))))) | 
| 88 | 82, 87 | eqtr2d 2778 | . . . . . . 7
⊢ (𝜑 → (exp‘(𝑈 · (log‘(𝐹‘𝑀)))) = (𝑇↑𝑐𝑈)) | 
| 89 | 63, 78, 88 | 3brtr4d 5175 | . . . . . 6
⊢ (𝜑 →
(exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹‘𝑀))))) | 
| 90 | 77 | relogcld 26665 | . . . . . . 7
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ∈ ℝ) | 
| 91 | 85 | relogcld 26665 | . . . . . . . 8
⊢ (𝜑 → (log‘(𝐹‘𝑀)) ∈ ℝ) | 
| 92 | 46, 91 | remulcld 11291 | . . . . . . 7
⊢ (𝜑 → (𝑈 · (log‘(𝐹‘𝑀))) ∈ ℝ) | 
| 93 |  | efle 16154 | . . . . . . 7
⊢
(((log‘(𝐹‘𝑁)) ∈ ℝ ∧ (𝑈 · (log‘(𝐹‘𝑀))) ∈ ℝ) →
((log‘(𝐹‘𝑁)) ≤ (𝑈 · (log‘(𝐹‘𝑀))) ↔ (exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹‘𝑀)))))) | 
| 94 | 90, 92, 93 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) ≤ (𝑈 · (log‘(𝐹‘𝑀))) ↔ (exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹‘𝑀)))))) | 
| 95 | 89, 94 | mpbird 257 | . . . . 5
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ≤ (𝑈 · (log‘(𝐹‘𝑀)))) | 
| 96 | 41 | recnd 11289 | . . . . . . . 8
⊢ (𝜑 → (log‘𝑁) ∈
ℂ) | 
| 97 | 91 | recnd 11289 | . . . . . . . 8
⊢ (𝜑 → (log‘(𝐹‘𝑀)) ∈ ℂ) | 
| 98 | 44 | rpcnd 13079 | . . . . . . . 8
⊢ (𝜑 → (log‘𝑀) ∈
ℂ) | 
| 99 | 44 | rpne0d 13082 | . . . . . . . 8
⊢ (𝜑 → (log‘𝑀) ≠ 0) | 
| 100 | 96, 97, 98, 99 | div12d 12079 | . . . . . . 7
⊢ (𝜑 → ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))) = ((log‘(𝐹‘𝑀)) · ((log‘𝑁) / (log‘𝑀)))) | 
| 101 | 39 | oveq2i 7442 | . . . . . . 7
⊢
((log‘(𝐹‘𝑀)) · 𝑈) = ((log‘(𝐹‘𝑀)) · ((log‘𝑁) / (log‘𝑀))) | 
| 102 | 100, 101 | eqtr4di 2795 | . . . . . 6
⊢ (𝜑 → ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))) = ((log‘(𝐹‘𝑀)) · 𝑈)) | 
| 103 | 97, 68 | mulcomd 11282 | . . . . . 6
⊢ (𝜑 → ((log‘(𝐹‘𝑀)) · 𝑈) = (𝑈 · (log‘(𝐹‘𝑀)))) | 
| 104 | 102, 103 | eqtrd 2777 | . . . . 5
⊢ (𝜑 → ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))) = (𝑈 · (log‘(𝐹‘𝑀)))) | 
| 105 | 95, 104 | breqtrrd 5171 | . . . 4
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀)))) | 
| 106 | 91, 44 | rerpdivcld 13108 | . . . . 5
⊢ (𝜑 → ((log‘(𝐹‘𝑀)) / (log‘𝑀)) ∈ ℝ) | 
| 107 | 7 | nnred 12281 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 108 | 6 | simprd 495 | . . . . . 6
⊢ (𝜑 → 1 < 𝑁) | 
| 109 | 107, 108 | rplogcld 26671 | . . . . 5
⊢ (𝜑 → (log‘𝑁) ∈
ℝ+) | 
| 110 | 90, 106, 109 | ledivmuld 13130 | . . . 4
⊢ (𝜑 → (((log‘(𝐹‘𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹‘𝑀)) / (log‘𝑀)) ↔ (log‘(𝐹‘𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))))) | 
| 111 | 105, 110 | mpbird 257 | . . 3
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹‘𝑀)) / (log‘𝑀))) | 
| 112 | 111, 55, 56 | 3brtr4g 5177 | . 2
⊢ (𝜑 → 𝑅 ≤ 𝑆) | 
| 113 | 75, 112 | jca 511 | 1
⊢ (𝜑 → (1 < (𝐹‘𝑀) ∧ 𝑅 ≤ 𝑆)) |