| Step | Hyp | Ref
| Expression |
| 1 | | ostth2.3 |
. . . . 5
⊢ (𝜑 → 1 < (𝐹‘𝑁)) |
| 2 | | 1re 11240 |
. . . . . 6
⊢ 1 ∈
ℝ |
| 3 | | ostth.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| 4 | | ostth2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘2)) |
| 5 | | eluz2b2 12942 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| 6 | 4, 5 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| 7 | 6 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 8 | | nnq 12983 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℚ) |
| 10 | | qabsabv.a |
. . . . . . . 8
⊢ 𝐴 = (AbsVal‘𝑄) |
| 11 | | qrng.q |
. . . . . . . . 9
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 12 | 11 | qrngbas 27587 |
. . . . . . . 8
⊢ ℚ =
(Base‘𝑄) |
| 13 | 10, 12 | abvcl 20781 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ) → (𝐹‘𝑁) ∈ ℝ) |
| 14 | 3, 9, 13 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 15 | | ltnle 11319 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑁) ∈ ℝ) → (1 < (𝐹‘𝑁) ↔ ¬ (𝐹‘𝑁) ≤ 1)) |
| 16 | 2, 14, 15 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (1 < (𝐹‘𝑁) ↔ ¬ (𝐹‘𝑁) ≤ 1)) |
| 17 | 1, 16 | mpbid 232 |
. . . 4
⊢ (𝜑 → ¬ (𝐹‘𝑁) ≤ 1) |
| 18 | | ostth2.7 |
. . . . . . . . . . . . 13
⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) |
| 19 | | ostth2.5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘2)) |
| 20 | | eluz2b2 12942 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀)) |
| 21 | 19, 20 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀)) |
| 22 | 21 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 23 | | nnq 12983 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℚ) |
| 25 | 10, 12 | abvcl 20781 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℝ) |
| 26 | 3, 24, 25 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 27 | | ifcl 4551 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
| 28 | 2, 26, 27 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
| 29 | 18, 28 | eqeltrid 2839 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 30 | | 0red 11243 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
| 31 | 2 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ) |
| 32 | | 0lt1 11764 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
| 33 | 32 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 1) |
| 34 | | max2 13208 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 35 | 26, 2, 34 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 36 | 35, 18 | breqtrrdi 5166 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤ 𝑇) |
| 37 | 30, 31, 29, 33, 36 | ltletrd 11400 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑇) |
| 38 | 29, 37 | elrpd 13053 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
| 39 | | ostth2.8 |
. . . . . . . . . . . 12
⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) |
| 40 | 7 | nnrpd 13054 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
| 41 | 40 | relogcld 26589 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) |
| 42 | 22 | nnred 12260 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 43 | 21 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 < 𝑀) |
| 44 | 42, 43 | rplogcld 26595 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝑀) ∈
ℝ+) |
| 45 | 41, 44 | rerpdivcld 13087 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ) |
| 46 | 39, 45 | eqeltrid 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 47 | 38, 46 | rpcxpcld 26699 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇↑𝑐𝑈) ∈
ℝ+) |
| 48 | 14, 47 | rerpdivcld 13087 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑁) / (𝑇↑𝑐𝑈)) ∈ ℝ) |
| 49 | 42, 29 | remulcld 11270 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 · 𝑇) ∈ ℝ) |
| 50 | | peano2re 11413 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ ℝ → (𝑈 + 1) ∈
ℝ) |
| 51 | 46, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 + 1) ∈ ℝ) |
| 52 | 49, 51 | remulcld 11270 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ) |
| 53 | | padic.j |
. . . . . . . . . 10
⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| 54 | | ostth.k |
. . . . . . . . . 10
⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| 55 | | ostth2.4 |
. . . . . . . . . 10
⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) |
| 56 | | ostth2.6 |
. . . . . . . . . 10
⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) |
| 57 | 11, 10, 53, 54, 3, 4, 1, 55, 19, 56, 18, 39 | ostth2lem3 27603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈))↑𝑛) ≤ (𝑛 · ((𝑀 · 𝑇) · (𝑈 + 1)))) |
| 58 | 48, 52, 57 | ostth2lem1 27586 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑁) / (𝑇↑𝑐𝑈)) ≤ 1) |
| 59 | 14, 31, 47 | ledivmuld 13109 |
. . . . . . . 8
⊢ (𝜑 → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈)) ≤ 1 ↔ (𝐹‘𝑁) ≤ ((𝑇↑𝑐𝑈) · 1))) |
| 60 | 58, 59 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑁) ≤ ((𝑇↑𝑐𝑈) · 1)) |
| 61 | 47 | rpcnd 13058 |
. . . . . . . 8
⊢ (𝜑 → (𝑇↑𝑐𝑈) ∈ ℂ) |
| 62 | 61 | mulridd 11257 |
. . . . . . 7
⊢ (𝜑 → ((𝑇↑𝑐𝑈) · 1) = (𝑇↑𝑐𝑈)) |
| 63 | 60, 62 | breqtrd 5150 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝑇↑𝑐𝑈)) |
| 64 | 63 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑀) ≤ 1) → (𝐹‘𝑁) ≤ (𝑇↑𝑐𝑈)) |
| 65 | | iftrue 4511 |
. . . . . . . 8
⊢ ((𝐹‘𝑀) ≤ 1 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) = 1) |
| 66 | 18, 65 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝐹‘𝑀) ≤ 1 → 𝑇 = 1) |
| 67 | 66 | oveq1d 7425 |
. . . . . 6
⊢ ((𝐹‘𝑀) ≤ 1 → (𝑇↑𝑐𝑈) = (1↑𝑐𝑈)) |
| 68 | 46 | recnd 11268 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℂ) |
| 69 | 68 | 1cxpd 26673 |
. . . . . 6
⊢ (𝜑 →
(1↑𝑐𝑈) = 1) |
| 70 | 67, 69 | sylan9eqr 2793 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑀) ≤ 1) → (𝑇↑𝑐𝑈) = 1) |
| 71 | 64, 70 | breqtrd 5150 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑀) ≤ 1) → (𝐹‘𝑁) ≤ 1) |
| 72 | 17, 71 | mtand 815 |
. . 3
⊢ (𝜑 → ¬ (𝐹‘𝑀) ≤ 1) |
| 73 | | ltnle 11319 |
. . . 4
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → (1 < (𝐹‘𝑀) ↔ ¬ (𝐹‘𝑀) ≤ 1)) |
| 74 | 2, 26, 73 | sylancr 587 |
. . 3
⊢ (𝜑 → (1 < (𝐹‘𝑀) ↔ ¬ (𝐹‘𝑀) ≤ 1)) |
| 75 | 72, 74 | mpbird 257 |
. 2
⊢ (𝜑 → 1 < (𝐹‘𝑀)) |
| 76 | 30, 31, 14, 33, 1 | lttrd 11401 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (𝐹‘𝑁)) |
| 77 | 14, 76 | elrpd 13053 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑁) ∈
ℝ+) |
| 78 | 77 | reeflogd 26590 |
. . . . . . 7
⊢ (𝜑 →
(exp‘(log‘(𝐹‘𝑁))) = (𝐹‘𝑁)) |
| 79 | | iffalse 4514 |
. . . . . . . . . . 11
⊢ (¬
(𝐹‘𝑀) ≤ 1 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) = (𝐹‘𝑀)) |
| 80 | 18, 79 | eqtrid 2783 |
. . . . . . . . . 10
⊢ (¬
(𝐹‘𝑀) ≤ 1 → 𝑇 = (𝐹‘𝑀)) |
| 81 | 72, 80 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 = (𝐹‘𝑀)) |
| 82 | 81 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝜑 → (𝑇↑𝑐𝑈) = ((𝐹‘𝑀)↑𝑐𝑈)) |
| 83 | 26 | recnd 11268 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
| 84 | 30, 31, 26, 33, 75 | lttrd 11401 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < (𝐹‘𝑀)) |
| 85 | 26, 84 | elrpd 13053 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) ∈
ℝ+) |
| 86 | 85 | rpne0d 13061 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑀) ≠ 0) |
| 87 | 83, 86, 68 | cxpefd 26678 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘𝑀)↑𝑐𝑈) = (exp‘(𝑈 · (log‘(𝐹‘𝑀))))) |
| 88 | 82, 87 | eqtr2d 2772 |
. . . . . . 7
⊢ (𝜑 → (exp‘(𝑈 · (log‘(𝐹‘𝑀)))) = (𝑇↑𝑐𝑈)) |
| 89 | 63, 78, 88 | 3brtr4d 5156 |
. . . . . 6
⊢ (𝜑 →
(exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹‘𝑀))))) |
| 90 | 77 | relogcld 26589 |
. . . . . . 7
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ∈ ℝ) |
| 91 | 85 | relogcld 26589 |
. . . . . . . 8
⊢ (𝜑 → (log‘(𝐹‘𝑀)) ∈ ℝ) |
| 92 | 46, 91 | remulcld 11270 |
. . . . . . 7
⊢ (𝜑 → (𝑈 · (log‘(𝐹‘𝑀))) ∈ ℝ) |
| 93 | | efle 16141 |
. . . . . . 7
⊢
(((log‘(𝐹‘𝑁)) ∈ ℝ ∧ (𝑈 · (log‘(𝐹‘𝑀))) ∈ ℝ) →
((log‘(𝐹‘𝑁)) ≤ (𝑈 · (log‘(𝐹‘𝑀))) ↔ (exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹‘𝑀)))))) |
| 94 | 90, 92, 93 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) ≤ (𝑈 · (log‘(𝐹‘𝑀))) ↔ (exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹‘𝑀)))))) |
| 95 | 89, 94 | mpbird 257 |
. . . . 5
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ≤ (𝑈 · (log‘(𝐹‘𝑀)))) |
| 96 | 41 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑁) ∈
ℂ) |
| 97 | 91 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → (log‘(𝐹‘𝑀)) ∈ ℂ) |
| 98 | 44 | rpcnd 13058 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑀) ∈
ℂ) |
| 99 | 44 | rpne0d 13061 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑀) ≠ 0) |
| 100 | 96, 97, 98, 99 | div12d 12058 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))) = ((log‘(𝐹‘𝑀)) · ((log‘𝑁) / (log‘𝑀)))) |
| 101 | 39 | oveq2i 7421 |
. . . . . . 7
⊢
((log‘(𝐹‘𝑀)) · 𝑈) = ((log‘(𝐹‘𝑀)) · ((log‘𝑁) / (log‘𝑀))) |
| 102 | 100, 101 | eqtr4di 2789 |
. . . . . 6
⊢ (𝜑 → ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))) = ((log‘(𝐹‘𝑀)) · 𝑈)) |
| 103 | 97, 68 | mulcomd 11261 |
. . . . . 6
⊢ (𝜑 → ((log‘(𝐹‘𝑀)) · 𝑈) = (𝑈 · (log‘(𝐹‘𝑀)))) |
| 104 | 102, 103 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))) = (𝑈 · (log‘(𝐹‘𝑀)))) |
| 105 | 95, 104 | breqtrrd 5152 |
. . . 4
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀)))) |
| 106 | 91, 44 | rerpdivcld 13087 |
. . . . 5
⊢ (𝜑 → ((log‘(𝐹‘𝑀)) / (log‘𝑀)) ∈ ℝ) |
| 107 | 7 | nnred 12260 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 108 | 6 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 1 < 𝑁) |
| 109 | 107, 108 | rplogcld 26595 |
. . . . 5
⊢ (𝜑 → (log‘𝑁) ∈
ℝ+) |
| 110 | 90, 106, 109 | ledivmuld 13109 |
. . . 4
⊢ (𝜑 → (((log‘(𝐹‘𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹‘𝑀)) / (log‘𝑀)) ↔ (log‘(𝐹‘𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹‘𝑀)) / (log‘𝑀))))) |
| 111 | 105, 110 | mpbird 257 |
. . 3
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹‘𝑀)) / (log‘𝑀))) |
| 112 | 111, 55, 56 | 3brtr4g 5158 |
. 2
⊢ (𝜑 → 𝑅 ≤ 𝑆) |
| 113 | 75, 112 | jca 511 |
1
⊢ (𝜑 → (1 < (𝐹‘𝑀) ∧ 𝑅 ≤ 𝑆)) |