MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem4 Structured version   Visualization version   GIF version

Theorem ostth2lem4 27698
Description: Lemma for ostth2 27699. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
ostth2.8 𝑈 = ((log‘𝑁) / (log‘𝑀))
Assertion
Ref Expression
ostth2lem4 (𝜑 → (1 < (𝐹𝑀) ∧ 𝑅𝑆))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑈   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝑈(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)

Proof of Theorem ostth2lem4
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ostth2.3 . . . . 5 (𝜑 → 1 < (𝐹𝑁))
2 1re 11290 . . . . . 6 1 ∈ ℝ
3 ostth.1 . . . . . . 7 (𝜑𝐹𝐴)
4 ostth2.2 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘2))
5 eluz2b2 12986 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
64, 5sylib 218 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
76simpld 494 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
8 nnq 13027 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
97, 8syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℚ)
10 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
11 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
1211qrngbas 27681 . . . . . . . 8 ℚ = (Base‘𝑄)
1310, 12abvcl 20839 . . . . . . 7 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
143, 9, 13syl2anc 583 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ)
15 ltnle 11369 . . . . . 6 ((1 ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (1 < (𝐹𝑁) ↔ ¬ (𝐹𝑁) ≤ 1))
162, 14, 15sylancr 586 . . . . 5 (𝜑 → (1 < (𝐹𝑁) ↔ ¬ (𝐹𝑁) ≤ 1))
171, 16mpbid 232 . . . 4 (𝜑 → ¬ (𝐹𝑁) ≤ 1)
18 ostth2.7 . . . . . . . . . . . . 13 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
19 ostth2.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘2))
20 eluz2b2 12986 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2119, 20sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 ∈ ℕ ∧ 1 < 𝑀))
2221simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
23 nnq 13027 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
2422, 23syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℚ)
2510, 12abvcl 20839 . . . . . . . . . . . . . . 15 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
263, 24, 25syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑀) ∈ ℝ)
27 ifcl 4593 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
282, 26, 27sylancr 586 . . . . . . . . . . . . 13 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
2918, 28eqeltrid 2848 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
30 0red 11293 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
312a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
32 0lt1 11812 . . . . . . . . . . . . . 14 0 < 1
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
34 max2 13249 . . . . . . . . . . . . . . 15 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3526, 2, 34sylancl 585 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
3635, 18breqtrrdi 5208 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑇)
3730, 31, 29, 33, 36ltletrd 11450 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑇)
3829, 37elrpd 13096 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ+)
39 ostth2.8 . . . . . . . . . . . 12 𝑈 = ((log‘𝑁) / (log‘𝑀))
407nnrpd 13097 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ+)
4140relogcld 26683 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑁) ∈ ℝ)
4222nnred 12308 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
4321simprd 495 . . . . . . . . . . . . . 14 (𝜑 → 1 < 𝑀)
4442, 43rplogcld 26689 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑀) ∈ ℝ+)
4541, 44rerpdivcld 13130 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) / (log‘𝑀)) ∈ ℝ)
4639, 45eqeltrid 2848 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℝ)
4738, 46rpcxpcld 26793 . . . . . . . . . 10 (𝜑 → (𝑇𝑐𝑈) ∈ ℝ+)
4814, 47rerpdivcld 13130 . . . . . . . . 9 (𝜑 → ((𝐹𝑁) / (𝑇𝑐𝑈)) ∈ ℝ)
4942, 29remulcld 11320 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑇) ∈ ℝ)
50 peano2re 11463 . . . . . . . . . . 11 (𝑈 ∈ ℝ → (𝑈 + 1) ∈ ℝ)
5146, 50syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 + 1) ∈ ℝ)
5249, 51remulcld 11320 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑇) · (𝑈 + 1)) ∈ ℝ)
53 padic.j . . . . . . . . . 10 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
54 ostth.k . . . . . . . . . 10 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
55 ostth2.4 . . . . . . . . . 10 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
56 ostth2.6 . . . . . . . . . 10 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
5711, 10, 53, 54, 3, 4, 1, 55, 19, 56, 18, 39ostth2lem3 27697 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑁) / (𝑇𝑐𝑈))↑𝑛) ≤ (𝑛 · ((𝑀 · 𝑇) · (𝑈 + 1))))
5848, 52, 57ostth2lem1 27680 . . . . . . . 8 (𝜑 → ((𝐹𝑁) / (𝑇𝑐𝑈)) ≤ 1)
5914, 31, 47ledivmuld 13152 . . . . . . . 8 (𝜑 → (((𝐹𝑁) / (𝑇𝑐𝑈)) ≤ 1 ↔ (𝐹𝑁) ≤ ((𝑇𝑐𝑈) · 1)))
6058, 59mpbid 232 . . . . . . 7 (𝜑 → (𝐹𝑁) ≤ ((𝑇𝑐𝑈) · 1))
6147rpcnd 13101 . . . . . . . 8 (𝜑 → (𝑇𝑐𝑈) ∈ ℂ)
6261mulridd 11307 . . . . . . 7 (𝜑 → ((𝑇𝑐𝑈) · 1) = (𝑇𝑐𝑈))
6360, 62breqtrd 5192 . . . . . 6 (𝜑 → (𝐹𝑁) ≤ (𝑇𝑐𝑈))
6463adantr 480 . . . . 5 ((𝜑 ∧ (𝐹𝑀) ≤ 1) → (𝐹𝑁) ≤ (𝑇𝑐𝑈))
65 iftrue 4554 . . . . . . . 8 ((𝐹𝑀) ≤ 1 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) = 1)
6618, 65eqtrid 2792 . . . . . . 7 ((𝐹𝑀) ≤ 1 → 𝑇 = 1)
6766oveq1d 7463 . . . . . 6 ((𝐹𝑀) ≤ 1 → (𝑇𝑐𝑈) = (1↑𝑐𝑈))
6846recnd 11318 . . . . . . 7 (𝜑𝑈 ∈ ℂ)
69681cxpd 26767 . . . . . 6 (𝜑 → (1↑𝑐𝑈) = 1)
7067, 69sylan9eqr 2802 . . . . 5 ((𝜑 ∧ (𝐹𝑀) ≤ 1) → (𝑇𝑐𝑈) = 1)
7164, 70breqtrd 5192 . . . 4 ((𝜑 ∧ (𝐹𝑀) ≤ 1) → (𝐹𝑁) ≤ 1)
7217, 71mtand 815 . . 3 (𝜑 → ¬ (𝐹𝑀) ≤ 1)
73 ltnle 11369 . . . 4 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → (1 < (𝐹𝑀) ↔ ¬ (𝐹𝑀) ≤ 1))
742, 26, 73sylancr 586 . . 3 (𝜑 → (1 < (𝐹𝑀) ↔ ¬ (𝐹𝑀) ≤ 1))
7572, 74mpbird 257 . 2 (𝜑 → 1 < (𝐹𝑀))
7630, 31, 14, 33, 1lttrd 11451 . . . . . . . . 9 (𝜑 → 0 < (𝐹𝑁))
7714, 76elrpd 13096 . . . . . . . 8 (𝜑 → (𝐹𝑁) ∈ ℝ+)
7877reeflogd 26684 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
79 iffalse 4557 . . . . . . . . . . 11 (¬ (𝐹𝑀) ≤ 1 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) = (𝐹𝑀))
8018, 79eqtrid 2792 . . . . . . . . . 10 (¬ (𝐹𝑀) ≤ 1 → 𝑇 = (𝐹𝑀))
8172, 80syl 17 . . . . . . . . 9 (𝜑𝑇 = (𝐹𝑀))
8281oveq1d 7463 . . . . . . . 8 (𝜑 → (𝑇𝑐𝑈) = ((𝐹𝑀)↑𝑐𝑈))
8326recnd 11318 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℂ)
8430, 31, 26, 33, 75lttrd 11451 . . . . . . . . . . 11 (𝜑 → 0 < (𝐹𝑀))
8526, 84elrpd 13096 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ+)
8685rpne0d 13104 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ≠ 0)
8783, 86, 68cxpefd 26772 . . . . . . . 8 (𝜑 → ((𝐹𝑀)↑𝑐𝑈) = (exp‘(𝑈 · (log‘(𝐹𝑀)))))
8882, 87eqtr2d 2781 . . . . . . 7 (𝜑 → (exp‘(𝑈 · (log‘(𝐹𝑀)))) = (𝑇𝑐𝑈))
8963, 78, 883brtr4d 5198 . . . . . 6 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹𝑀)))))
9077relogcld 26683 . . . . . . 7 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
9185relogcld 26683 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑀)) ∈ ℝ)
9246, 91remulcld 11320 . . . . . . 7 (𝜑 → (𝑈 · (log‘(𝐹𝑀))) ∈ ℝ)
93 efle 16166 . . . . . . 7 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (𝑈 · (log‘(𝐹𝑀))) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (𝑈 · (log‘(𝐹𝑀))) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹𝑀))))))
9490, 92, 93syl2anc 583 . . . . . 6 (𝜑 → ((log‘(𝐹𝑁)) ≤ (𝑈 · (log‘(𝐹𝑀))) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(𝑈 · (log‘(𝐹𝑀))))))
9589, 94mpbird 257 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ (𝑈 · (log‘(𝐹𝑀))))
9641recnd 11318 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℂ)
9791recnd 11318 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑀)) ∈ ℂ)
9844rpcnd 13101 . . . . . . . 8 (𝜑 → (log‘𝑀) ∈ ℂ)
9944rpne0d 13104 . . . . . . . 8 (𝜑 → (log‘𝑀) ≠ 0)
10096, 97, 98, 99div12d 12106 . . . . . . 7 (𝜑 → ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))) = ((log‘(𝐹𝑀)) · ((log‘𝑁) / (log‘𝑀))))
10139oveq2i 7459 . . . . . . 7 ((log‘(𝐹𝑀)) · 𝑈) = ((log‘(𝐹𝑀)) · ((log‘𝑁) / (log‘𝑀)))
102100, 101eqtr4di 2798 . . . . . 6 (𝜑 → ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))) = ((log‘(𝐹𝑀)) · 𝑈))
10397, 68mulcomd 11311 . . . . . 6 (𝜑 → ((log‘(𝐹𝑀)) · 𝑈) = (𝑈 · (log‘(𝐹𝑀))))
104102, 103eqtrd 2780 . . . . 5 (𝜑 → ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))) = (𝑈 · (log‘(𝐹𝑀))))
10595, 104breqtrrd 5194 . . . 4 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀))))
10691, 44rerpdivcld 13130 . . . . 5 (𝜑 → ((log‘(𝐹𝑀)) / (log‘𝑀)) ∈ ℝ)
1077nnred 12308 . . . . . 6 (𝜑𝑁 ∈ ℝ)
1086simprd 495 . . . . . 6 (𝜑 → 1 < 𝑁)
109107, 108rplogcld 26689 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
11090, 106, 109ledivmuld 13152 . . . 4 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹𝑀)) / (log‘𝑀)) ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · ((log‘(𝐹𝑀)) / (log‘𝑀)))))
111105, 110mpbird 257 . . 3 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ ((log‘(𝐹𝑀)) / (log‘𝑀)))
112111, 55, 563brtr4g 5200 . 2 (𝜑𝑅𝑆)
11375, 112jca 511 1 (𝜑 → (1 < (𝐹𝑀) ∧ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  cuz 12903  cq 13013  cexp 14112  expce 16109  cprime 16718   pCnt cpc 16883  s cress 17287  AbsValcabv 20831  fldccnfld 21387  logclog 26614  𝑐ccxp 26615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrng 20572  df-subrg 20597  df-drng 20753  df-abv 20832  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617
This theorem is referenced by:  ostth2  27699
  Copyright terms: Public domain W3C validator