| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4sqlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for 4sq 16984. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem6 | ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11238 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 2 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 3 | 2 | zred 12697 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | 4sqlem5.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 5 | 4 | nnred 12255 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 6 | 5 | rehalfcld 12488 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 7 | 3, 6 | readdcld 11264 | . . . . 5 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ) |
| 8 | 4 | nnrpd 13049 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
| 9 | 7, 8 | modcld 13892 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
| 10 | modge0 13896 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) | |
| 11 | 7, 8, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) |
| 12 | 1, 9, 6, 11 | lesub1dd 11853 | . . 3 ⊢ (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
| 13 | df-neg 11469 | . . 3 ⊢ -(𝑀 / 2) = (0 − (𝑀 / 2)) | |
| 14 | 4sqlem5.4 | . . 3 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 15 | 12, 13, 14 | 3brtr4g 5153 | . 2 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
| 16 | modlt 13897 | . . . . . 6 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) | |
| 17 | 7, 8, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) |
| 18 | 4 | nncnd 12256 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 19 | 18 | 2halvesd 12487 | . . . . 5 ⊢ (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
| 20 | 17, 19 | breqtrrd 5147 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))) |
| 21 | 9, 6, 6 | ltsubaddd 11833 | . . . 4 ⊢ (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))) |
| 22 | 20, 21 | mpbird 257 | . . 3 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2)) |
| 23 | 14, 22 | eqbrtrid 5154 | . 2 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
| 24 | 15, 23 | jca 511 | 1 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 -cneg 11467 / cdiv 11894 ℕcn 12240 2c2 12295 ℤcz 12588 ℝ+crp 13008 mod cmo 13886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 df-mod 13887 |
| This theorem is referenced by: 4sqlem7 16964 4sqlem10 16967 |
| Copyright terms: Public domain | W3C validator |