Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem6 Structured version   Visualization version   GIF version

Theorem 4sqlem6 16289
 Description: Lemma for 4sq 16310. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem6 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))

Proof of Theorem 4sqlem6
StepHypRef Expression
1 0red 10651 . . . 4 (𝜑 → 0 ∈ ℝ)
2 4sqlem5.2 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
32zred 12095 . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 4sqlem5.3 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
54nnred 11658 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
65rehalfcld 11890 . . . . . 6 (𝜑 → (𝑀 / 2) ∈ ℝ)
73, 6readdcld 10677 . . . . 5 (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ)
84nnrpd 12437 . . . . 5 (𝜑𝑀 ∈ ℝ+)
97, 8modcld 13258 . . . 4 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
10 modge0 13262 . . . . 5 (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀))
117, 8, 10syl2anc 587 . . . 4 (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀))
121, 9, 6, 11lesub1dd 11263 . . 3 (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))
13 df-neg 10880 . . 3 -(𝑀 / 2) = (0 − (𝑀 / 2))
14 4sqlem5.4 . . 3 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1512, 13, 143brtr4g 5068 . 2 (𝜑 → -(𝑀 / 2) ≤ 𝐵)
16 modlt 13263 . . . . . 6 (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀)
177, 8, 16syl2anc 587 . . . . 5 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀)
184nncnd 11659 . . . . . 6 (𝜑𝑀 ∈ ℂ)
19182halvesd 11889 . . . . 5 (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
2017, 19breqtrrd 5062 . . . 4 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))
219, 6, 6ltsubaddd 11243 . . . 4 (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))))
2220, 21mpbird 260 . . 3 (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2))
2314, 22eqbrtrid 5069 . 2 (𝜑𝐵 < (𝑀 / 2))
2415, 23jca 515 1 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5034  (class class class)co 7145  ℝcr 10543  0cc0 10544   + caddc 10547   < clt 10682   ≤ cle 10683   − cmin 10877  -cneg 10878   / cdiv 11304  ℕcn 11643  2c2 11698  ℤcz 11989  ℝ+crp 12397   mod cmo 13252 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-sup 8908  df-inf 8909  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fl 13177  df-mod 13253 This theorem is referenced by:  4sqlem7  16290  4sqlem10  16293
 Copyright terms: Public domain W3C validator