MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem6 Structured version   Visualization version   GIF version

Theorem 4sqlem6 16572
Description: Lemma for 4sq 16593. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem6 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))

Proof of Theorem 4sqlem6
StepHypRef Expression
1 0red 10909 . . . 4 (𝜑 → 0 ∈ ℝ)
2 4sqlem5.2 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
32zred 12355 . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 4sqlem5.3 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
54nnred 11918 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
65rehalfcld 12150 . . . . . 6 (𝜑 → (𝑀 / 2) ∈ ℝ)
73, 6readdcld 10935 . . . . 5 (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℝ)
84nnrpd 12699 . . . . 5 (𝜑𝑀 ∈ ℝ+)
97, 8modcld 13523 . . . 4 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
10 modge0 13527 . . . . 5 (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀))
117, 8, 10syl2anc 583 . . . 4 (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀))
121, 9, 6, 11lesub1dd 11521 . . 3 (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))
13 df-neg 11138 . . 3 -(𝑀 / 2) = (0 − (𝑀 / 2))
14 4sqlem5.4 . . 3 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1512, 13, 143brtr4g 5104 . 2 (𝜑 → -(𝑀 / 2) ≤ 𝐵)
16 modlt 13528 . . . . . 6 (((𝐴 + (𝑀 / 2)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀)
177, 8, 16syl2anc 583 . . . . 5 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀)
184nncnd 11919 . . . . . 6 (𝜑𝑀 ∈ ℂ)
19182halvesd 12149 . . . . 5 (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
2017, 19breqtrrd 5098 . . . 4 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))
219, 6, 6ltsubaddd 11501 . . . 4 (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))))
2220, 21mpbird 256 . . 3 (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2))
2314, 22eqbrtrid 5105 . 2 (𝜑𝐵 < (𝑀 / 2))
2415, 23jca 511 1 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cz 12249  +crp 12659   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518
This theorem is referenced by:  4sqlem7  16573  4sqlem10  16576
  Copyright terms: Public domain W3C validator