| Step | Hyp | Ref
| Expression |
| 1 | | omsmon.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 2 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 dom 𝑅) → 𝐴 ⊆ 𝐵) |
| 3 | | sstr2 3989 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ ∪ 𝑧 → 𝐴 ⊆ ∪ 𝑧)) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 dom 𝑅) → (𝐵 ⊆ ∪ 𝑧 → 𝐴 ⊆ ∪ 𝑧)) |
| 5 | 4 | anim1d 611 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 dom 𝑅) → ((𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω) → (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω))) |
| 6 | 5 | ss2rabdv 4075 |
. . . . . . 7
⊢ (𝜑 → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) |
| 7 | | resmpt 6054 |
. . . . . . 7
⊢ ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦))) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦))) |
| 9 | | resss 6018 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) |
| 10 | 8, 9 | eqsstrrdi 4028 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦))) |
| 11 | | rnss 5949 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦))) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦))) |
| 13 | | oms.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅:𝑄⟶(0[,]+∞)) |
| 14 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑅:𝑄⟶(0[,]+∞)) |
| 15 | | ssrab2 4079 |
. . . . . . . . . . . . 13
⊢ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ⊆ 𝒫 dom
𝑅 |
| 16 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) |
| 17 | 15, 16 | sselid 3980 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑅) |
| 18 | | elpwi 4606 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝒫 dom 𝑅 → 𝑥 ⊆ dom 𝑅) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑥 ⊆ dom 𝑅) |
| 20 | 13 | fdmd 6745 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝑅 = 𝑄) |
| 21 | 20 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → dom 𝑅 = 𝑄) |
| 22 | 19, 21 | sseqtrd 4019 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑥 ⊆ 𝑄) |
| 23 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
| 24 | 22, 23 | sseldd 3983 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑄) |
| 25 | 14, 24 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → (𝑅‘𝑦) ∈ (0[,]+∞)) |
| 26 | 25 | ralrimiva 3145 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → ∀𝑦 ∈ 𝑥 (𝑅‘𝑦) ∈ (0[,]+∞)) |
| 27 | | vex 3483 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 28 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑥 |
| 29 | 28 | esumcl 34032 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝑅‘𝑦) ∈ (0[,]+∞)) →
Σ*𝑦 ∈
𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
| 30 | 27, 29 | mpan 690 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 (𝑅‘𝑦) ∈ (0[,]+∞) →
Σ*𝑦 ∈
𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
| 31 | 26, 30 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) →
Σ*𝑦 ∈
𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
| 32 | 31 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
| 33 | | eqid 2736 |
. . . . . 6
⊢ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) |
| 34 | 33 | rnmptss 7142 |
. . . . 5
⊢
(∀𝑥 ∈
{𝑧 ∈ 𝒫 dom
𝑅 ∣ (𝐴 ⊆ ∪ 𝑧
∧ 𝑧 ≼
ω)}Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
| 35 | 32, 34 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
| 36 | 12, 35 | xrge0infssd 32766 |
. . 3
⊢ (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)), (0[,]+∞), < ) ≤ inf(ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
| 37 | | oms.o |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝑉) |
| 38 | | omsmon.b |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ∪ 𝑄) |
| 39 | 1, 38 | sstrd 3993 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑄) |
| 40 | | omsfval 34297 |
. . . 4
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ⊆ ∪ 𝑄)
→ ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
| 41 | 37, 13, 39, 40 | syl3anc 1372 |
. . 3
⊢ (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
| 42 | | omsfval 34297 |
. . . 4
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐵 ⊆ ∪ 𝑄)
→ ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
| 43 | 37, 13, 38, 42 | syl3anc 1372 |
. . 3
⊢ (𝜑 → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
| 44 | 36, 41, 43 | 3brtr4d 5174 |
. 2
⊢ (𝜑 → ((toOMeas‘𝑅)‘𝐴) ≤ ((toOMeas‘𝑅)‘𝐵)) |
| 45 | | oms.m |
. . 3
⊢ 𝑀 = (toOMeas‘𝑅) |
| 46 | 45 | fveq1i 6906 |
. 2
⊢ (𝑀‘𝐴) = ((toOMeas‘𝑅)‘𝐴) |
| 47 | 45 | fveq1i 6906 |
. 2
⊢ (𝑀‘𝐵) = ((toOMeas‘𝑅)‘𝐵) |
| 48 | 44, 46, 47 | 3brtr4g 5176 |
1
⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |