Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmon Structured version   Visualization version   GIF version

Theorem omsmon 34051
Description: A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmon.a (𝜑𝐴𝐵)
omsmon.b (𝜑𝐵 𝑄)
Assertion
Ref Expression
omsmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem omsmon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmon.a . . . . . . . . . . 11 (𝜑𝐴𝐵)
21adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → 𝐴𝐵)
3 sstr2 3983 . . . . . . . . . 10 (𝐴𝐵 → (𝐵 𝑧𝐴 𝑧))
42, 3syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → (𝐵 𝑧𝐴 𝑧))
54anim1d 609 . . . . . . . 8 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → ((𝐵 𝑧𝑧 ≼ ω) → (𝐴 𝑧𝑧 ≼ ω)))
65ss2rabdv 4069 . . . . . . 7 (𝜑 → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
7 resmpt 6042 . . . . . . 7 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
86, 7syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
9 resss 6007 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
108, 9eqsstrrdi 4032 . . . . 5 (𝜑 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
11 rnss 5941 . . . . 5 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1210, 11syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
13 oms.r . . . . . . . . . 10 (𝜑𝑅:𝑄⟶(0[,]+∞))
1413ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
15 ssrab2 4073 . . . . . . . . . . . . 13 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
16 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
1715, 16sselid 3974 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
18 elpwi 4611 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 dom 𝑅𝑥 ⊆ dom 𝑅)
1917, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ⊆ dom 𝑅)
2013fdmd 6733 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = 𝑄)
2120ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → dom 𝑅 = 𝑄)
2219, 21sseqtrd 4017 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥𝑄)
23 simpr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑥)
2422, 23sseldd 3977 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑄)
2514, 24ffvelcdmd 7094 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
2625ralrimiva 3135 . . . . . . 7 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
27 vex 3465 . . . . . . . 8 𝑥 ∈ V
28 nfcv 2891 . . . . . . . . 9 𝑦𝑥
2928esumcl 33782 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3027, 29mpan 688 . . . . . . 7 (∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3126, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3231ralrimiva 3135 . . . . 5 (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
33 eqid 2725 . . . . . 6 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
3433rnmptss 7132 . . . . 5 (∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3612, 35xrge0infssd 32618 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ≤ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
37 oms.o . . . 4 (𝜑𝑄𝑉)
38 omsmon.b . . . . 5 (𝜑𝐵 𝑄)
391, 38sstrd 3987 . . . 4 (𝜑𝐴 𝑄)
40 omsfval 34047 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4137, 13, 39, 40syl3anc 1368 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
42 omsfval 34047 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐵 𝑄) → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4337, 13, 38, 42syl3anc 1368 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4436, 41, 433brtr4d 5181 . 2 (𝜑 → ((toOMeas‘𝑅)‘𝐴) ≤ ((toOMeas‘𝑅)‘𝐵))
45 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
4645fveq1i 6897 . 2 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
4745fveq1i 6897 . 2 (𝑀𝐵) = ((toOMeas‘𝑅)‘𝐵)
4844, 46, 473brtr4g 5183 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  Vcvv 3461  wss 3944  𝒫 cpw 4604   cuni 4909   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  cres 5680  wf 6545  cfv 6549  (class class class)co 7419  ωcom 7871  cdom 8962  infcinf 9471  0cc0 11145  +∞cpnf 11282   < clt 11285  cle 11286  [,]cicc 13367  Σ*cesum 33779  toOMeascoms 34044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-xadd 13133  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-seq 14008  df-hash 14331  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-tset 17260  df-ple 17261  df-ds 17263  df-rest 17412  df-topn 17413  df-0g 17431  df-gsum 17432  df-topgen 17433  df-ordt 17491  df-xrs 17492  df-mre 17574  df-mrc 17575  df-acs 17577  df-ps 18566  df-tsr 18567  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-submnd 18749  df-cntz 19285  df-cmn 19754  df-fbas 21298  df-fg 21299  df-top 22845  df-topon 22862  df-topsp 22884  df-bases 22898  df-ntr 22973  df-nei 23051  df-cn 23180  df-haus 23268  df-fil 23799  df-fm 23891  df-flim 23892  df-flf 23893  df-tsms 24080  df-esum 33780  df-oms 34045
This theorem is referenced by:  omsmeas  34076
  Copyright terms: Public domain W3C validator