Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmon Structured version   Visualization version   GIF version

Theorem omsmon 34335
Description: A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmon.a (𝜑𝐴𝐵)
omsmon.b (𝜑𝐵 𝑄)
Assertion
Ref Expression
omsmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem omsmon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmon.a . . . . . . . . . . 11 (𝜑𝐴𝐵)
21adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → 𝐴𝐵)
3 sstr2 3970 . . . . . . . . . 10 (𝐴𝐵 → (𝐵 𝑧𝐴 𝑧))
42, 3syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → (𝐵 𝑧𝐴 𝑧))
54anim1d 611 . . . . . . . 8 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → ((𝐵 𝑧𝑧 ≼ ω) → (𝐴 𝑧𝑧 ≼ ω)))
65ss2rabdv 4056 . . . . . . 7 (𝜑 → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
7 resmpt 6029 . . . . . . 7 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
86, 7syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
9 resss 5993 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
108, 9eqsstrrdi 4009 . . . . 5 (𝜑 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
11 rnss 5924 . . . . 5 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1210, 11syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
13 oms.r . . . . . . . . . 10 (𝜑𝑅:𝑄⟶(0[,]+∞))
1413ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
15 ssrab2 4060 . . . . . . . . . . . . 13 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
16 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
1715, 16sselid 3961 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
18 elpwi 4587 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 dom 𝑅𝑥 ⊆ dom 𝑅)
1917, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ⊆ dom 𝑅)
2013fdmd 6721 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = 𝑄)
2120ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → dom 𝑅 = 𝑄)
2219, 21sseqtrd 4000 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥𝑄)
23 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑥)
2422, 23sseldd 3964 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑄)
2514, 24ffvelcdmd 7080 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
2625ralrimiva 3133 . . . . . . 7 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
27 vex 3468 . . . . . . . 8 𝑥 ∈ V
28 nfcv 2899 . . . . . . . . 9 𝑦𝑥
2928esumcl 34066 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3027, 29mpan 690 . . . . . . 7 (∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3126, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3231ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
33 eqid 2736 . . . . . 6 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
3433rnmptss 7118 . . . . 5 (∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3612, 35xrge0infssd 32743 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ≤ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
37 oms.o . . . 4 (𝜑𝑄𝑉)
38 omsmon.b . . . . 5 (𝜑𝐵 𝑄)
391, 38sstrd 3974 . . . 4 (𝜑𝐴 𝑄)
40 omsfval 34331 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4137, 13, 39, 40syl3anc 1373 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
42 omsfval 34331 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐵 𝑄) → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4337, 13, 38, 42syl3anc 1373 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4436, 41, 433brtr4d 5156 . 2 (𝜑 → ((toOMeas‘𝑅)‘𝐴) ≤ ((toOMeas‘𝑅)‘𝐵))
45 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
4645fveq1i 6882 . 2 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
4745fveq1i 6882 . 2 (𝑀𝐵) = ((toOMeas‘𝑅)‘𝐵)
4844, 46, 473brtr4g 5158 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  wss 3931  𝒫 cpw 4580   cuni 4888   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  ωcom 7866  cdom 8962  infcinf 9458  0cc0 11134  +∞cpnf 11271   < clt 11274  cle 11275  [,]cicc 13370  Σ*cesum 34063  toOMeascoms 34328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-xadd 13134  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-tset 17295  df-ple 17296  df-ds 17298  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-ordt 17520  df-xrs 17521  df-mre 17603  df-mrc 17604  df-acs 17606  df-ps 18581  df-tsr 18582  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-cntz 19305  df-cmn 19768  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-nei 23041  df-cn 23170  df-haus 23258  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070  df-esum 34064  df-oms 34329
This theorem is referenced by:  omsmeas  34360
  Copyright terms: Public domain W3C validator