Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmon Structured version   Visualization version   GIF version

Theorem omsmon 32629
Description: A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmon.a (𝜑𝐴𝐵)
omsmon.b (𝜑𝐵 𝑄)
Assertion
Ref Expression
omsmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem omsmon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmon.a . . . . . . . . . . 11 (𝜑𝐴𝐵)
21adantr 482 . . . . . . . . . 10 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → 𝐴𝐵)
3 sstr2 3946 . . . . . . . . . 10 (𝐴𝐵 → (𝐵 𝑧𝐴 𝑧))
42, 3syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → (𝐵 𝑧𝐴 𝑧))
54anim1d 612 . . . . . . . 8 ((𝜑𝑧 ∈ 𝒫 dom 𝑅) → ((𝐵 𝑧𝑧 ≼ ω) → (𝐴 𝑧𝑧 ≼ ω)))
65ss2rabdv 4028 . . . . . . 7 (𝜑 → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
7 resmpt 5984 . . . . . . 7 ({𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ⊆ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
86, 7syl 17 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
9 resss 5955 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ↾ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)}) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
108, 9eqsstrrdi 3994 . . . . 5 (𝜑 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
11 rnss 5887 . . . . 5 ((𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1210, 11syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
13 oms.r . . . . . . . . . 10 (𝜑𝑅:𝑄⟶(0[,]+∞))
1413ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑅:𝑄⟶(0[,]+∞))
15 ssrab2 4032 . . . . . . . . . . . . 13 {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅
16 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
1715, 16sselid 3937 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 dom 𝑅)
18 elpwi 4562 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 dom 𝑅𝑥 ⊆ dom 𝑅)
1917, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥 ⊆ dom 𝑅)
2013fdmd 6671 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = 𝑄)
2120ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → dom 𝑅 = 𝑄)
2219, 21sseqtrd 3979 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑥𝑄)
23 simpr 486 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑥)
2422, 23sseldd 3940 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → 𝑦𝑄)
2514, 24ffvelcdmd 7027 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) ∧ 𝑦𝑥) → (𝑅𝑦) ∈ (0[,]+∞))
2625ralrimiva 3141 . . . . . . 7 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞))
27 vex 3447 . . . . . . . 8 𝑥 ∈ V
28 nfcv 2905 . . . . . . . . 9 𝑦𝑥
2928esumcl 32360 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞)) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3027, 29mpan 688 . . . . . . 7 (∀𝑦𝑥 (𝑅𝑦) ∈ (0[,]+∞) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3126, 30syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}) → Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
3231ralrimiva 3141 . . . . 5 (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞))
33 eqid 2737 . . . . . 6 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))
3433rnmptss 7061 . . . . 5 (∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑦𝑥(𝑅𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3532, 34syl 17 . . . 4 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
3612, 35xrge0infssd 31435 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ≤ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
37 oms.o . . . 4 (𝜑𝑄𝑉)
38 omsmon.b . . . . 5 (𝜑𝐵 𝑄)
391, 38sstrd 3949 . . . 4 (𝜑𝐴 𝑄)
40 omsfval 32625 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4137, 13, 39, 40syl3anc 1371 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
42 omsfval 32625 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐵 𝑄) → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4337, 13, 38, 42syl3anc 1371 . . 3 (𝜑 → ((toOMeas‘𝑅)‘𝐵) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐵 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
4436, 41, 433brtr4d 5132 . 2 (𝜑 → ((toOMeas‘𝑅)‘𝐴) ≤ ((toOMeas‘𝑅)‘𝐵))
45 oms.m . . 3 𝑀 = (toOMeas‘𝑅)
4645fveq1i 6835 . 2 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
4745fveq1i 6835 . 2 (𝑀𝐵) = ((toOMeas‘𝑅)‘𝐵)
4844, 46, 473brtr4g 5134 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  {crab 3405  Vcvv 3443  wss 3905  𝒫 cpw 4555   cuni 4860   class class class wbr 5100  cmpt 5183  dom cdm 5627  ran crn 5628  cres 5629  wf 6484  cfv 6488  (class class class)co 7346  ωcom 7789  cdom 8811  infcinf 9307  0cc0 10981  +∞cpnf 11116   < clt 11119  cle 11120  [,]cicc 13192  Σ*cesum 32357  toOMeascoms 32622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7604  df-om 7790  df-1st 7908  df-2nd 7909  df-supp 8057  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fsupp 9236  df-fi 9277  df-sup 9308  df-inf 9309  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-z 12430  df-dec 12548  df-uz 12693  df-q 12799  df-xadd 12959  df-ioo 13193  df-ioc 13194  df-ico 13195  df-icc 13196  df-fz 13350  df-fzo 13493  df-seq 13832  df-hash 14155  df-struct 16950  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-ress 17044  df-plusg 17077  df-mulr 17078  df-tset 17083  df-ple 17084  df-ds 17086  df-rest 17235  df-topn 17236  df-0g 17254  df-gsum 17255  df-topgen 17256  df-ordt 17314  df-xrs 17315  df-mre 17397  df-mrc 17398  df-acs 17400  df-ps 18386  df-tsr 18387  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-submnd 18533  df-cntz 19024  df-cmn 19488  df-fbas 20704  df-fg 20705  df-top 22153  df-topon 22170  df-topsp 22192  df-bases 22206  df-ntr 22281  df-nei 22359  df-cn 22488  df-haus 22576  df-fil 23107  df-fm 23199  df-flim 23200  df-flf 23201  df-tsms 23388  df-esum 32358  df-oms 32623
This theorem is referenced by:  omsmeas  32654
  Copyright terms: Public domain W3C validator