Proof of Theorem ioombl1lem1
Step | Hyp | Ref
| Expression |
1 | | ioombl1.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
3 | | ioombl1.p |
. . . . . . . 8
⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
4 | | ioombl1.f1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
5 | | ovolfcl 24630 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
6 | 4, 5 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
7 | 6 | simp1d 1141 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
8 | 3, 7 | eqeltrid 2843 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ) |
9 | 2, 8 | ifcld 4505 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ) |
10 | | ioombl1.q |
. . . . . . 7
⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
11 | 6 | simp2d 1142 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
12 | 10, 11 | eqeltrid 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ) |
13 | | min2 12924 |
. . . . . 6
⊢
((if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄) |
14 | 9, 12, 13 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄) |
15 | | df-br 5075 |
. . . . 5
⊢
(if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄 ↔ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ ≤ ) |
16 | 14, 15 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ ≤ ) |
17 | 9, 12 | ifcld 4505 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) |
18 | 17, 12 | opelxpd 5627 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ (ℝ ×
ℝ)) |
19 | 16, 18 | elind 4128 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
20 | | ioombl1.g |
. . 3
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
21 | 19, 20 | fmptd 6988 |
. 2
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
22 | | max1 12919 |
. . . . . . 7
⊢ ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
23 | 8, 2, 22 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) |
24 | 6 | simp3d 1143 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) |
25 | 24, 3, 10 | 3brtr4g 5108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ≤ 𝑄) |
26 | | breq2 5078 |
. . . . . . 7
⊢ (if(𝑃 ≤ 𝐴, 𝐴, 𝑃) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) → (𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ↔ 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) |
27 | | breq2 5078 |
. . . . . . 7
⊢ (𝑄 = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) → (𝑃 ≤ 𝑄 ↔ 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) |
28 | 26, 27 | ifboth 4498 |
. . . . . 6
⊢ ((𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∧ 𝑃 ≤ 𝑄) → 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
29 | 23, 25, 28 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) |
30 | | df-br 5075 |
. . . . 5
⊢ (𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ↔ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ ≤ ) |
31 | 29, 30 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ ≤ ) |
32 | 8, 17 | opelxpd 5627 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ (ℝ ×
ℝ)) |
33 | 31, 32 | elind 4128 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
34 | | ioombl1.h |
. . 3
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
35 | 33, 34 | fmptd 6988 |
. 2
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
36 | 21, 35 | jca 512 |
1
⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ)))) |