MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem1 Structured version   Visualization version   GIF version

Theorem ioombl1lem1 23773
Description: Lemma for ioombl1 23777. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem1 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem1
StepHypRef Expression
1 ioombl1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21adantr 474 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
3 ioombl1.p . . . . . . . 8 𝑃 = (1st ‘(𝐹𝑛))
4 ioombl1.f1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
5 ovolfcl 23681 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
64, 5sylan 575 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
76simp1d 1133 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
83, 7syl5eqel 2863 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
92, 8ifcld 4352 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
10 ioombl1.q . . . . . . 7 𝑄 = (2nd ‘(𝐹𝑛))
116simp2d 1134 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
1210, 11syl5eqel 2863 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
13 min2 12338 . . . . . 6 ((if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄)
149, 12, 13syl2anc 579 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄)
15 df-br 4889 . . . . 5 (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄 ↔ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ ≤ )
1614, 15sylib 210 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ ≤ )
179, 12ifcld 4352 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
18 opelxpi 5394 . . . . 5 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ (ℝ × ℝ))
1917, 12, 18syl2anc 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ (ℝ × ℝ))
2016, 19elind 4021 . . 3 ((𝜑𝑛 ∈ ℕ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
21 ioombl1.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
2220, 21fmptd 6650 . 2 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
23 max1 12333 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃))
248, 2, 23syl2anc 579 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃))
256simp3d 1135 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2625, 3, 103brtr4g 4922 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑃𝑄)
27 breq2 4892 . . . . . . 7 (if(𝑃𝐴, 𝐴, 𝑃) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃) ↔ 𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
28 breq2 4892 . . . . . . 7 (𝑄 = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑃𝑄𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
2927, 28ifboth 4345 . . . . . 6 ((𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃) ∧ 𝑃𝑄) → 𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
3024, 26, 29syl2anc 579 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
31 df-br 4889 . . . . 5 (𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ↔ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ ≤ )
3230, 31sylib 210 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ ≤ )
33 opelxpi 5394 . . . . 5 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ (ℝ × ℝ))
348, 17, 33syl2anc 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ (ℝ × ℝ))
3532, 34elind 4021 . . 3 ((𝜑𝑛 ∈ ℕ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
36 ioombl1.h . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
3735, 36fmptd 6650 . 2 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3822, 37jca 507 1 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  cin 3791  wss 3792  ifcif 4307  cop 4404   cuni 4673   class class class wbr 4888  cmpt 4967   × cxp 5355  ran crn 5358  ccom 5361  wf 6133  cfv 6137  (class class class)co 6924  1st c1st 7445  2nd c2nd 7446  supcsup 8636  cr 10273  1c1 10275   + caddc 10277  +∞cpnf 10410  *cxr 10412   < clt 10413  cle 10414  cmin 10608  cn 11379  +crp 12142  (,)cioo 12492  seqcseq 13124  abscabs 14387  vol*covol 23677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-pre-lttri 10348  ax-pre-lttrn 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-1st 7447  df-2nd 7448  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419
This theorem is referenced by:  ioombl1lem3  23775  ioombl1lem4  23776
  Copyright terms: Public domain W3C validator