Proof of Theorem ioombl1lem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ioombl1.a | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) | 
| 3 |  | ioombl1.p | . . . . . . . 8
⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) | 
| 4 |  | ioombl1.f1 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) | 
| 5 |  | ovolfcl 25502 | . . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) | 
| 6 | 4, 5 | sylan 580 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) | 
| 7 | 6 | simp1d 1142 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) | 
| 8 | 3, 7 | eqeltrid 2844 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ) | 
| 9 | 2, 8 | ifcld 4571 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ) | 
| 10 |  | ioombl1.q | . . . . . . 7
⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) | 
| 11 | 6 | simp2d 1143 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) | 
| 12 | 10, 11 | eqeltrid 2844 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ) | 
| 13 |  | min2 13233 | . . . . . 6
⊢
((if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄) | 
| 14 | 9, 12, 13 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄) | 
| 15 |  | df-br 5143 | . . . . 5
⊢
(if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄 ↔ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ ≤ ) | 
| 16 | 14, 15 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ ≤ ) | 
| 17 | 9, 12 | ifcld 4571 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) | 
| 18 | 17, 12 | opelxpd 5723 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ (ℝ ×
ℝ)) | 
| 19 | 16, 18 | elind 4199 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) | 
| 20 |  | ioombl1.g | . . 3
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) | 
| 21 | 19, 20 | fmptd 7133 | . 2
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) | 
| 22 |  | max1 13228 | . . . . . . 7
⊢ ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) | 
| 23 | 8, 2, 22 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃)) | 
| 24 | 6 | simp3d 1144 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛))) | 
| 25 | 24, 3, 10 | 3brtr4g 5176 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ≤ 𝑄) | 
| 26 |  | breq2 5146 | . . . . . . 7
⊢ (if(𝑃 ≤ 𝐴, 𝐴, 𝑃) = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) → (𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ↔ 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) | 
| 27 |  | breq2 5146 | . . . . . . 7
⊢ (𝑄 = if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) → (𝑃 ≤ 𝑄 ↔ 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄))) | 
| 28 | 26, 27 | ifboth 4564 | . . . . . 6
⊢ ((𝑃 ≤ if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ∧ 𝑃 ≤ 𝑄) → 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) | 
| 29 | 23, 25, 28 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)) | 
| 30 |  | df-br 5143 | . . . . 5
⊢ (𝑃 ≤ if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄) ↔ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ ≤ ) | 
| 31 | 29, 30 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ ≤ ) | 
| 32 | 8, 17 | opelxpd 5723 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ (ℝ ×
ℝ)) | 
| 33 | 31, 32 | elind 4199 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) | 
| 34 |  | ioombl1.h | . . 3
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) | 
| 35 | 33, 34 | fmptd 7133 | . 2
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) | 
| 36 | 21, 35 | jca 511 | 1
⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ)))) |