| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limensuci | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| limensuci.1 | ⊢ Lim 𝐴 |
| Ref | Expression |
|---|---|
| limensuci | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limensuci.1 | . . . . 5 ⊢ Lim 𝐴 | |
| 2 | 1 | limenpsi 9069 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| 3 | 2 | ensymd 8930 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴) |
| 4 | 0ex 5246 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | en2sn 8966 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → {∅} ≈ {𝐴}) | |
| 6 | 4, 5 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∅} ≈ {𝐴}) |
| 7 | disjdifr 4424 | . . . 4 ⊢ ((𝐴 ∖ {∅}) ∩ {∅}) = ∅ | |
| 8 | limord 6368 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 9 | 1, 8 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
| 10 | ordirr 6325 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 |
| 12 | disjsn 4663 | . . . . 5 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 13 | 11, 12 | mpbir 231 | . . . 4 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| 14 | unen 8971 | . . . 4 ⊢ ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) | |
| 15 | 7, 13, 14 | mpanr12 705 | . . 3 ⊢ (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
| 16 | 3, 6, 15 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
| 17 | 0ellim 6371 | . . . . . 6 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | |
| 18 | 1, 17 | ax-mp 5 | . . . . 5 ⊢ ∅ ∈ 𝐴 |
| 19 | 4 | snss 4736 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴) |
| 20 | 18, 19 | mpbi 230 | . . . 4 ⊢ {∅} ⊆ 𝐴 |
| 21 | undif 4433 | . . . 4 ⊢ ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴) | |
| 22 | 20, 21 | mpbi 230 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴 |
| 23 | uncom 4109 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅}) | |
| 24 | 22, 23 | eqtr3i 2754 | . 2 ⊢ 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅}) |
| 25 | df-suc 6313 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 26 | 16, 24, 25 | 3brtr4g 5126 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {csn 4577 class class class wbr 5092 Ord word 6306 Lim wlim 6308 suc csuc 6309 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 |
| This theorem is referenced by: limensuc 9071 infensuc 9072 omensuc 9552 |
| Copyright terms: Public domain | W3C validator |