| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limensuci | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| limensuci.1 | ⊢ Lim 𝐴 |
| Ref | Expression |
|---|---|
| limensuci | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limensuci.1 | . . . . 5 ⊢ Lim 𝐴 | |
| 2 | 1 | limenpsi 9171 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| 3 | 2 | ensymd 9024 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴) |
| 4 | 0ex 5282 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | en2sn 9060 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → {∅} ≈ {𝐴}) | |
| 6 | 4, 5 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∅} ≈ {𝐴}) |
| 7 | disjdifr 4453 | . . . 4 ⊢ ((𝐴 ∖ {∅}) ∩ {∅}) = ∅ | |
| 8 | limord 6418 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 9 | 1, 8 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
| 10 | ordirr 6375 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 |
| 12 | disjsn 4692 | . . . . 5 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 13 | 11, 12 | mpbir 231 | . . . 4 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| 14 | unen 9065 | . . . 4 ⊢ ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) | |
| 15 | 7, 13, 14 | mpanr12 705 | . . 3 ⊢ (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
| 16 | 3, 6, 15 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
| 17 | 0ellim 6421 | . . . . . 6 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | |
| 18 | 1, 17 | ax-mp 5 | . . . . 5 ⊢ ∅ ∈ 𝐴 |
| 19 | 4 | snss 4766 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴) |
| 20 | 18, 19 | mpbi 230 | . . . 4 ⊢ {∅} ⊆ 𝐴 |
| 21 | undif 4462 | . . . 4 ⊢ ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴) | |
| 22 | 20, 21 | mpbi 230 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴 |
| 23 | uncom 4138 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅}) | |
| 24 | 22, 23 | eqtr3i 2761 | . 2 ⊢ 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅}) |
| 25 | df-suc 6363 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 26 | 16, 24, 25 | 3brtr4g 5158 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 class class class wbr 5124 Ord word 6356 Lim wlim 6358 suc csuc 6359 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 |
| This theorem is referenced by: limensuc 9173 infensuc 9174 omensuc 9675 |
| Copyright terms: Public domain | W3C validator |