MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuci Structured version   Visualization version   GIF version

Theorem limensuci 9155
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Hypothesis
Ref Expression
limensuci.1 Lim 𝐴
Assertion
Ref Expression
limensuci (𝐴𝑉𝐴 ≈ suc 𝐴)

Proof of Theorem limensuci
StepHypRef Expression
1 limensuci.1 . . . . 5 Lim 𝐴
21limenpsi 9154 . . . 4 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
32ensymd 9003 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴)
4 0ex 5306 . . . 4 ∅ ∈ V
5 en2sn 9043 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → {∅} ≈ {𝐴})
64, 5mpan 686 . . 3 (𝐴𝑉 → {∅} ≈ {𝐴})
7 disjdifr 4471 . . . 4 ((𝐴 ∖ {∅}) ∩ {∅}) = ∅
8 limord 6423 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
91, 8ax-mp 5 . . . . . 6 Ord 𝐴
10 ordirr 6381 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
119, 10ax-mp 5 . . . . 5 ¬ 𝐴𝐴
12 disjsn 4714 . . . . 5 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
1311, 12mpbir 230 . . . 4 (𝐴 ∩ {𝐴}) = ∅
14 unen 9048 . . . 4 ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
157, 13, 14mpanr12 701 . . 3 (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
163, 6, 15syl2anc 582 . 2 (𝐴𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
17 0ellim 6426 . . . . . 6 (Lim 𝐴 → ∅ ∈ 𝐴)
181, 17ax-mp 5 . . . . 5 ∅ ∈ 𝐴
194snss 4788 . . . . 5 (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴)
2018, 19mpbi 229 . . . 4 {∅} ⊆ 𝐴
21 undif 4480 . . . 4 ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴)
2220, 21mpbi 229 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴
23 uncom 4152 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅})
2422, 23eqtr3i 2760 . 2 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅})
25 df-suc 6369 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2616, 24, 253brtr4g 5181 1 (𝐴𝑉𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  Ord word 6362  Lim wlim 6364  suc csuc 6365  cen 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8705  df-en 8942  df-dom 8943
This theorem is referenced by:  limensuc  9156  infensuc  9157  omensuc  9653
  Copyright terms: Public domain W3C validator