Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limensuci | Structured version Visualization version GIF version |
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limensuci.1 | ⊢ Lim 𝐴 |
Ref | Expression |
---|---|
limensuci | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limensuci.1 | . . . . 5 ⊢ Lim 𝐴 | |
2 | 1 | limenpsi 8888 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
3 | 2 | ensymd 8746 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴) |
4 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
5 | en2sn 8785 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → {∅} ≈ {𝐴}) | |
6 | 4, 5 | mpan 686 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∅} ≈ {𝐴}) |
7 | disjdifr 4403 | . . . 4 ⊢ ((𝐴 ∖ {∅}) ∩ {∅}) = ∅ | |
8 | limord 6310 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
9 | 1, 8 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
10 | ordirr 6269 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 |
12 | disjsn 4644 | . . . . 5 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
13 | 11, 12 | mpbir 230 | . . . 4 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
14 | unen 8790 | . . . 4 ⊢ ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) | |
15 | 7, 13, 14 | mpanr12 701 | . . 3 ⊢ (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
16 | 3, 6, 15 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
17 | 0ellim 6313 | . . . . . 6 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | |
18 | 1, 17 | ax-mp 5 | . . . . 5 ⊢ ∅ ∈ 𝐴 |
19 | 4 | snss 4716 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴) |
20 | 18, 19 | mpbi 229 | . . . 4 ⊢ {∅} ⊆ 𝐴 |
21 | undif 4412 | . . . 4 ⊢ ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴) | |
22 | 20, 21 | mpbi 229 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴 |
23 | uncom 4083 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅}) | |
24 | 22, 23 | eqtr3i 2768 | . 2 ⊢ 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅}) |
25 | df-suc 6257 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
26 | 16, 24, 25 | 3brtr4g 5104 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 class class class wbr 5070 Ord word 6250 Lim wlim 6252 suc csuc 6253 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 |
This theorem is referenced by: limensuc 8890 infensuc 8891 omensuc 9344 |
Copyright terms: Public domain | W3C validator |