| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limensuci | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| limensuci.1 | ⊢ Lim 𝐴 |
| Ref | Expression |
|---|---|
| limensuci | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limensuci.1 | . . . . 5 ⊢ Lim 𝐴 | |
| 2 | 1 | limenpsi 9065 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) |
| 3 | 2 | ensymd 8927 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴) |
| 4 | 0ex 5243 | . . . 4 ⊢ ∅ ∈ V | |
| 5 | en2sn 8963 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → {∅} ≈ {𝐴}) | |
| 6 | 4, 5 | mpan 690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {∅} ≈ {𝐴}) |
| 7 | disjdifr 4420 | . . . 4 ⊢ ((𝐴 ∖ {∅}) ∩ {∅}) = ∅ | |
| 8 | limord 6367 | . . . . . . 7 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 9 | 1, 8 | ax-mp 5 | . . . . . 6 ⊢ Ord 𝐴 |
| 10 | ordirr 6324 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ ¬ 𝐴 ∈ 𝐴 |
| 12 | disjsn 4661 | . . . . 5 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 13 | 11, 12 | mpbir 231 | . . . 4 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| 14 | unen 8967 | . . . 4 ⊢ ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) | |
| 15 | 7, 13, 14 | mpanr12 705 | . . 3 ⊢ (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
| 16 | 3, 6, 15 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴})) |
| 17 | 0ellim 6370 | . . . . . 6 ⊢ (Lim 𝐴 → ∅ ∈ 𝐴) | |
| 18 | 1, 17 | ax-mp 5 | . . . . 5 ⊢ ∅ ∈ 𝐴 |
| 19 | 4 | snss 4734 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴) |
| 20 | 18, 19 | mpbi 230 | . . . 4 ⊢ {∅} ⊆ 𝐴 |
| 21 | undif 4429 | . . . 4 ⊢ ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴) | |
| 22 | 20, 21 | mpbi 230 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴 |
| 23 | uncom 4105 | . . 3 ⊢ ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅}) | |
| 24 | 22, 23 | eqtr3i 2756 | . 2 ⊢ 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅}) |
| 25 | df-suc 6312 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 26 | 16, 24, 25 | 3brtr4g 5123 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {csn 4573 class class class wbr 5089 Ord word 6305 Lim wlim 6307 suc csuc 6308 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 |
| This theorem is referenced by: limensuc 9067 infensuc 9068 omensuc 9546 |
| Copyright terms: Public domain | W3C validator |