MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuci Structured version   Visualization version   GIF version

Theorem limensuci 9100
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Hypothesis
Ref Expression
limensuci.1 Lim 𝐴
Assertion
Ref Expression
limensuci (𝐴𝑉𝐴 ≈ suc 𝐴)

Proof of Theorem limensuci
StepHypRef Expression
1 limensuci.1 . . . . 5 Lim 𝐴
21limenpsi 9099 . . . 4 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
32ensymd 8948 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴)
4 0ex 5265 . . . 4 ∅ ∈ V
5 en2sn 8988 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → {∅} ≈ {𝐴})
64, 5mpan 689 . . 3 (𝐴𝑉 → {∅} ≈ {𝐴})
7 disjdifr 4433 . . . 4 ((𝐴 ∖ {∅}) ∩ {∅}) = ∅
8 limord 6378 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
91, 8ax-mp 5 . . . . . 6 Ord 𝐴
10 ordirr 6336 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
119, 10ax-mp 5 . . . . 5 ¬ 𝐴𝐴
12 disjsn 4673 . . . . 5 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
1311, 12mpbir 230 . . . 4 (𝐴 ∩ {𝐴}) = ∅
14 unen 8993 . . . 4 ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
157, 13, 14mpanr12 704 . . 3 (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
163, 6, 15syl2anc 585 . 2 (𝐴𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
17 0ellim 6381 . . . . . 6 (Lim 𝐴 → ∅ ∈ 𝐴)
181, 17ax-mp 5 . . . . 5 ∅ ∈ 𝐴
194snss 4747 . . . . 5 (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴)
2018, 19mpbi 229 . . . 4 {∅} ⊆ 𝐴
21 undif 4442 . . . 4 ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴)
2220, 21mpbi 229 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴
23 uncom 4114 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅})
2422, 23eqtr3i 2763 . 2 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅})
25 df-suc 6324 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2616, 24, 253brtr4g 5140 1 (𝐴𝑉𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4283  {csn 4587   class class class wbr 5106  Ord word 6317  Lim wlim 6319  suc csuc 6320  cen 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8651  df-en 8887  df-dom 8888
This theorem is referenced by:  limensuc  9101  infensuc  9102  omensuc  9597
  Copyright terms: Public domain W3C validator