MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuci Structured version   Visualization version   GIF version

Theorem limensuci 9123
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Hypothesis
Ref Expression
limensuci.1 Lim 𝐴
Assertion
Ref Expression
limensuci (𝐴𝑉𝐴 ≈ suc 𝐴)

Proof of Theorem limensuci
StepHypRef Expression
1 limensuci.1 . . . . 5 Lim 𝐴
21limenpsi 9122 . . . 4 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
32ensymd 8979 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴)
4 0ex 5265 . . . 4 ∅ ∈ V
5 en2sn 9015 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → {∅} ≈ {𝐴})
64, 5mpan 690 . . 3 (𝐴𝑉 → {∅} ≈ {𝐴})
7 disjdifr 4439 . . . 4 ((𝐴 ∖ {∅}) ∩ {∅}) = ∅
8 limord 6396 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
91, 8ax-mp 5 . . . . . 6 Ord 𝐴
10 ordirr 6353 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
119, 10ax-mp 5 . . . . 5 ¬ 𝐴𝐴
12 disjsn 4678 . . . . 5 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
1311, 12mpbir 231 . . . 4 (𝐴 ∩ {𝐴}) = ∅
14 unen 9020 . . . 4 ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
157, 13, 14mpanr12 705 . . 3 (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
163, 6, 15syl2anc 584 . 2 (𝐴𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
17 0ellim 6399 . . . . . 6 (Lim 𝐴 → ∅ ∈ 𝐴)
181, 17ax-mp 5 . . . . 5 ∅ ∈ 𝐴
194snss 4752 . . . . 5 (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴)
2018, 19mpbi 230 . . . 4 {∅} ⊆ 𝐴
21 undif 4448 . . . 4 ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴)
2220, 21mpbi 230 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴
23 uncom 4124 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅})
2422, 23eqtr3i 2755 . 2 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅})
25 df-suc 6341 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2616, 24, 253brtr4g 5144 1 (𝐴𝑉𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  Ord word 6334  Lim wlim 6336  suc csuc 6337  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923
This theorem is referenced by:  limensuc  9124  infensuc  9125  omensuc  9616
  Copyright terms: Public domain W3C validator