MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuci Structured version   Visualization version   GIF version

Theorem limensuci 8547
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Hypothesis
Ref Expression
limensuci.1 Lim 𝐴
Assertion
Ref Expression
limensuci (𝐴𝑉𝐴 ≈ suc 𝐴)

Proof of Theorem limensuci
StepHypRef Expression
1 limensuci.1 . . . . 5 Lim 𝐴
21limenpsi 8546 . . . 4 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
32ensymd 8415 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴)
4 0ex 5109 . . . 4 ∅ ∈ V
5 en2sn 8448 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → {∅} ≈ {𝐴})
64, 5mpan 686 . . 3 (𝐴𝑉 → {∅} ≈ {𝐴})
7 incom 4105 . . . . 5 ((𝐴 ∖ {∅}) ∩ {∅}) = ({∅} ∩ (𝐴 ∖ {∅}))
8 disjdif 4341 . . . . 5 ({∅} ∩ (𝐴 ∖ {∅})) = ∅
97, 8eqtri 2821 . . . 4 ((𝐴 ∖ {∅}) ∩ {∅}) = ∅
10 limord 6132 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
111, 10ax-mp 5 . . . . . 6 Ord 𝐴
12 ordirr 6091 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
1311, 12ax-mp 5 . . . . 5 ¬ 𝐴𝐴
14 disjsn 4560 . . . . 5 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
1513, 14mpbir 232 . . . 4 (𝐴 ∩ {𝐴}) = ∅
16 unen 8451 . . . 4 ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
179, 15, 16mpanr12 701 . . 3 (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
183, 6, 17syl2anc 584 . 2 (𝐴𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
19 0ellim 6135 . . . . . 6 (Lim 𝐴 → ∅ ∈ 𝐴)
201, 19ax-mp 5 . . . . 5 ∅ ∈ 𝐴
214snss 4631 . . . . 5 (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴)
2220, 21mpbi 231 . . . 4 {∅} ⊆ 𝐴
23 undif 4350 . . . 4 ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴)
2422, 23mpbi 231 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴
25 uncom 4056 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅})
2624, 25eqtr3i 2823 . 2 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅})
27 df-suc 6079 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2818, 26, 273brtr4g 5002 1 (𝐴𝑉𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1525  wcel 2083  Vcvv 3440  cdif 3862  cun 3863  cin 3864  wss 3865  c0 4217  {csn 4478   class class class wbr 4968  Ord word 6072  Lim wlim 6074  suc csuc 6075  cen 8361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-1o 7960  df-er 8146  df-en 8365  df-dom 8366
This theorem is referenced by:  limensuc  8548  infensuc  8549  omensuc  8972
  Copyright terms: Public domain W3C validator