MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuci Structured version   Visualization version   GIF version

Theorem limensuci 8707
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Hypothesis
Ref Expression
limensuci.1 Lim 𝐴
Assertion
Ref Expression
limensuci (𝐴𝑉𝐴 ≈ suc 𝐴)

Proof of Theorem limensuci
StepHypRef Expression
1 limensuci.1 . . . . 5 Lim 𝐴
21limenpsi 8706 . . . 4 (𝐴𝑉𝐴 ≈ (𝐴 ∖ {∅}))
32ensymd 8571 . . 3 (𝐴𝑉 → (𝐴 ∖ {∅}) ≈ 𝐴)
4 0ex 5170 . . . 4 ∅ ∈ V
5 en2sn 8605 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → {∅} ≈ {𝐴})
64, 5mpan 690 . . 3 (𝐴𝑉 → {∅} ≈ {𝐴})
7 incom 4102 . . . . 5 ((𝐴 ∖ {∅}) ∩ {∅}) = ({∅} ∩ (𝐴 ∖ {∅}))
8 disjdif 4361 . . . . 5 ({∅} ∩ (𝐴 ∖ {∅})) = ∅
97, 8eqtri 2782 . . . 4 ((𝐴 ∖ {∅}) ∩ {∅}) = ∅
10 limord 6221 . . . . . . 7 (Lim 𝐴 → Ord 𝐴)
111, 10ax-mp 5 . . . . . 6 Ord 𝐴
12 ordirr 6180 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
1311, 12ax-mp 5 . . . . 5 ¬ 𝐴𝐴
14 disjsn 4597 . . . . 5 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
1513, 14mpbir 234 . . . 4 (𝐴 ∩ {𝐴}) = ∅
16 unen 8609 . . . 4 ((((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) ∧ (((𝐴 ∖ {∅}) ∩ {∅}) = ∅ ∧ (𝐴 ∩ {𝐴}) = ∅)) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
179, 15, 16mpanr12 705 . . 3 (((𝐴 ∖ {∅}) ≈ 𝐴 ∧ {∅} ≈ {𝐴}) → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
183, 6, 17syl2anc 588 . 2 (𝐴𝑉 → ((𝐴 ∖ {∅}) ∪ {∅}) ≈ (𝐴 ∪ {𝐴}))
19 0ellim 6224 . . . . . 6 (Lim 𝐴 → ∅ ∈ 𝐴)
201, 19ax-mp 5 . . . . 5 ∅ ∈ 𝐴
214snss 4669 . . . . 5 (∅ ∈ 𝐴 ↔ {∅} ⊆ 𝐴)
2220, 21mpbi 233 . . . 4 {∅} ⊆ 𝐴
23 undif 4371 . . . 4 ({∅} ⊆ 𝐴 ↔ ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴)
2422, 23mpbi 233 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = 𝐴
25 uncom 4054 . . 3 ({∅} ∪ (𝐴 ∖ {∅})) = ((𝐴 ∖ {∅}) ∪ {∅})
2624, 25eqtr3i 2784 . 2 𝐴 = ((𝐴 ∖ {∅}) ∪ {∅})
27 df-suc 6168 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2818, 26, 273brtr4g 5059 1 (𝐴𝑉𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407  cdif 3851  cun 3852  cin 3853  wss 3854  c0 4221  {csn 4515   class class class wbr 5025  Ord word 6161  Lim wlim 6163  suc csuc 6164  cen 8517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8292  df-en 8521  df-dom 8522
This theorem is referenced by:  limensuc  8708  infensuc  8709  omensuc  9137
  Copyright terms: Public domain W3C validator