MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem4 Structured version   Visualization version   GIF version

Theorem ioombl1lem4 25414
Description: Lemma for ioombl1 25415. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem4 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ ((vol*‘𝐸) + 𝐶))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem4
Dummy variables 𝑥 𝑗 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4221 . . . 4 (𝐸𝐵) ⊆ 𝐸
2 ioombl1.e . . . 4 (𝜑𝐸 ⊆ ℝ)
3 ioombl1.v . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
4 ovolsscl 25339 . . . 4 (((𝐸𝐵) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐵)) ∈ ℝ)
51, 2, 3, 4mp3an2i 1462 . . 3 (𝜑 → (vol*‘(𝐸𝐵)) ∈ ℝ)
6 difss 4124 . . . 4 (𝐸𝐵) ⊆ 𝐸
7 ovolsscl 25339 . . . 4 (((𝐸𝐵) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐵)) ∈ ℝ)
86, 2, 3, 7mp3an2i 1462 . . 3 (𝜑 → (vol*‘(𝐸𝐵)) ∈ ℝ)
95, 8readdcld 11241 . 2 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ∈ ℝ)
10 ioombl1.b . . 3 𝐵 = (𝐴(,)+∞)
11 ioombl1.a . . 3 (𝜑𝐴 ∈ ℝ)
12 ioombl1.c . . 3 (𝜑𝐶 ∈ ℝ+)
13 ioombl1.s . . 3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
14 ioombl1.t . . 3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
15 ioombl1.u . . 3 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
16 ioombl1.f1 . . 3 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
17 ioombl1.f2 . . 3 (𝜑𝐸 ran ((,) ∘ 𝐹))
18 ioombl1.f3 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
19 ioombl1.p . . 3 𝑃 = (1st ‘(𝐹𝑛))
20 ioombl1.q . . 3 𝑄 = (2nd ‘(𝐹𝑛))
21 ioombl1.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
22 ioombl1.h . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
2310, 11, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22ioombl1lem2 25412 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
2412rpred 13014 . . 3 (𝜑𝐶 ∈ ℝ)
253, 24readdcld 11241 . 2 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
2610, 11, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22ioombl1lem1 25411 . . . . . . . . 9 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2726simpld 494 . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 eqid 2724 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
2928, 14ovolsf 25325 . . . . . . . 8 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
3027, 29syl 17 . . . . . . 7 (𝜑𝑇:ℕ⟶(0[,)+∞))
3130frnd 6716 . . . . . 6 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
32 rge0ssre 13431 . . . . . 6 (0[,)+∞) ⊆ ℝ
3331, 32sstrdi 3987 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
34 1nn 12221 . . . . . . . 8 1 ∈ ℕ
3530fdmd 6719 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3634, 35eleqtrrid 2832 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
3736ne0d 4328 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
38 dm0rn0 5915 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
3938necon3bii 2985 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
4037, 39sylib 217 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
4130ffvelcdmda 7077 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ (0[,)+∞))
4232, 41sselid 3973 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℝ)
43 eqid 2724 . . . . . . . . . . . . 13 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
4443, 13ovolsf 25325 . . . . . . . . . . . 12 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
4516, 44syl 17 . . . . . . . . . . 11 (𝜑𝑆:ℕ⟶(0[,)+∞))
4645ffvelcdmda 7077 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) ∈ (0[,)+∞))
4732, 46sselid 3973 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) ∈ ℝ)
4823adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
50 nnuz 12863 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2835 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
52 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝜑)
53 elfznn 13528 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
5428ovolfsf 25324 . . . . . . . . . . . . . . 15 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
5527, 54syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
5655ffvelcdmda 7077 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ (0[,)+∞))
5732, 56sselid 3973 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ)
5852, 53, 57syl2an 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ)
5943ovolfsf 25324 . . . . . . . . . . . . . . . 16 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
6016, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
6160ffvelcdmda 7077 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ (0[,)+∞))
62 elrege0 13429 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)))
6361, 62sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)))
6463simpld 494 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ)
6552, 53, 64syl2an 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ)
6626simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
67 eqid 2724 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
6867ovolfsf 25324 . . . . . . . . . . . . . . . . . 18 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞))
6966, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞))
7069ffvelcdmda 7077 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ (0[,)+∞))
71 elrege0 13429 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
7270, 71sylib 217 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
7372simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛))
7472simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ)
7557, 74addge01d 11800 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛) ↔ (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))))
7673, 75mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
7710, 11, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22ioombl1lem3 25413 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
7876, 77breqtrd 5165 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
7952, 53, 78syl2an 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
8051, 58, 65, 79serle 14021 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗))
8114fveq1i 6883 . . . . . . . . . 10 (𝑇𝑗) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗)
8213fveq1i 6883 . . . . . . . . . 10 (𝑆𝑗) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗)
8380, 81, 823brtr4g 5173 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ≤ (𝑆𝑗))
84 1zzd 12591 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
85 eqidd 2725 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
8663simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
8745frnd 6716 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
88 icossxr 13407 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ ℝ*
8987, 88sstrdi 3987 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝑆 ⊆ ℝ*)
9089adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
9145ffnd 6709 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 Fn ℕ)
92 fnfvelrn 7073 . . . . . . . . . . . . . . . . . . 19 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
9391, 92sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
94 supxrub 13301 . . . . . . . . . . . . . . . . . 18 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
9590, 93, 94syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
9695ralrimiva 3138 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
97 brralrspcev 5199 . . . . . . . . . . . . . . . 16 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥)
9823, 96, 97syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥)
9950, 13, 84, 85, 64, 86, 98isumsup2 15790 . . . . . . . . . . . . . 14 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
10087, 32sstrdi 3987 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ⊆ ℝ)
10145fdmd 6719 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝑆 = ℕ)
10234, 101eleqtrrid 2832 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ dom 𝑆)
103102ne0d 4328 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 ≠ ∅)
104 dm0rn0 5915 . . . . . . . . . . . . . . . . 17 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
105104necon3bii 2985 . . . . . . . . . . . . . . . 16 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
106103, 105sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ≠ ∅)
107 breq1 5142 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑆𝑘) → (𝑧𝑥 ↔ (𝑆𝑘) ≤ 𝑥))
108107ralrn 7080 . . . . . . . . . . . . . . . . . 18 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
10991, 108syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
110109rexbidv 3170 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
11198, 110mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥)
112 supxrre 13304 . . . . . . . . . . . . . . 15 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
113100, 106, 111, 112syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
11499, 113breqtrrd 5167 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ*, < ))
115114adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑆 ⇝ sup(ran 𝑆, ℝ*, < ))
11613, 115eqbrtrrid 5175 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇝ sup(ran 𝑆, ℝ*, < ))
11764adantlr 712 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ)
11886adantlr 712 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
11950, 49, 116, 117, 118climserle 15607 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
12082, 119eqbrtrid 5174 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
12142, 47, 48, 83, 120letrd 11369 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
122121ralrimiva 3138 . . . . . . 7 (𝜑 → ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
123 brralrspcev 5199 . . . . . . 7 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥)
12423, 122, 123syl2anc 583 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥)
12530ffnd 6709 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
126 breq1 5142 . . . . . . . . 9 (𝑧 = (𝑇𝑗) → (𝑧𝑥 ↔ (𝑇𝑗) ≤ 𝑥))
127126ralrn 7080 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥))
128125, 127syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥))
129128rexbidv 3170 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥))
130124, 129mpbird 257 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
13133, 40, 130suprcld 12175 . . . 4 (𝜑 → sup(ran 𝑇, ℝ, < ) ∈ ℝ)
13267, 15ovolsf 25325 . . . . . . . 8 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞))
13366, 132syl 17 . . . . . . 7 (𝜑𝑈:ℕ⟶(0[,)+∞))
134133frnd 6716 . . . . . 6 (𝜑 → ran 𝑈 ⊆ (0[,)+∞))
135134, 32sstrdi 3987 . . . . 5 (𝜑 → ran 𝑈 ⊆ ℝ)
136133fdmd 6719 . . . . . . . 8 (𝜑 → dom 𝑈 = ℕ)
13734, 136eleqtrrid 2832 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑈)
138137ne0d 4328 . . . . . 6 (𝜑 → dom 𝑈 ≠ ∅)
139 dm0rn0 5915 . . . . . . 7 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
140139necon3bii 2985 . . . . . 6 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
141138, 140sylib 217 . . . . 5 (𝜑 → ran 𝑈 ≠ ∅)
142133ffvelcdmda 7077 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ∈ (0[,)+∞))
14332, 142sselid 3973 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ∈ ℝ)
14452, 53, 74syl2an 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ)
145 elrege0 13429 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛)))
14656, 145sylib 217 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛)))
147146simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛))
14874, 57addge02d 11801 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛) ↔ (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))))
149147, 148mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
150149, 77breqtrd 5165 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
15152, 53, 150syl2an 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
15251, 144, 65, 151serle 14021 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗))
15315fveq1i 6883 . . . . . . . . . 10 (𝑈𝑗) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗)
154152, 153, 823brtr4g 5173 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ≤ (𝑆𝑗))
155143, 47, 48, 154, 120letrd 11369 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
156155ralrimiva 3138 . . . . . . 7 (𝜑 → ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
157 brralrspcev 5199 . . . . . . 7 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥)
15823, 156, 157syl2anc 583 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥)
159133ffnd 6709 . . . . . . . 8 (𝜑𝑈 Fn ℕ)
160 breq1 5142 . . . . . . . . 9 (𝑧 = (𝑈𝑗) → (𝑧𝑥 ↔ (𝑈𝑗) ≤ 𝑥))
161160ralrn 7080 . . . . . . . 8 (𝑈 Fn ℕ → (∀𝑧 ∈ ran 𝑈 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥))
162159, 161syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥))
163162rexbidv 3170 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥))
164158, 163mpbird 257 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑥)
165135, 141, 164suprcld 12175 . . . 4 (𝜑 → sup(ran 𝑈, ℝ, < ) ∈ ℝ)
166 ssralv 4043 . . . . . . . . . 10 ((𝐸𝐵) ⊆ 𝐸 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
1671, 166ax-mp 5 . . . . . . . . 9 (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
16819breq1i 5146 . . . . . . . . . . . . 13 (𝑃 < 𝑥 ↔ (1st ‘(𝐹𝑛)) < 𝑥)
169 ovolfcl 25319 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
17016, 169sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
171170simp1d 1139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
17219, 171eqeltrid 2829 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
173172adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
1741, 2sstrid 3986 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸𝐵) ⊆ ℝ)
175174sselda 3975 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐸𝐵)) → 𝑥 ∈ ℝ)
176175adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
177 ltle 11300 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑃 < 𝑥𝑃𝑥))
178173, 176, 177syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥𝑃𝑥))
179 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
180 opex 5455 . . . . . . . . . . . . . . . . . . . 20 ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V
18121fvmpt2 7000 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
182179, 180, 181sylancl 585 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
183182fveq2d 6886 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
18411adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
185184, 172ifcld 4567 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
186170simp2d 1140 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
18720, 186eqeltrid 2829 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
188185, 187ifcld 4567 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
189 op1stg 7981 . . . . . . . . . . . . . . . . . . 19 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
190188, 187, 189syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
191183, 190eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
192191ad2ant2r 744 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (1st ‘(𝐺𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
193188ad2ant2r 744 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
194185ad2ant2r 744 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
195174ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (𝐸𝐵) ⊆ ℝ)
196 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑥 ∈ (𝐸𝐵))
197195, 196sseldd 3976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑥 ∈ ℝ)
198187ad2ant2r 744 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑄 ∈ ℝ)
199 min1 13166 . . . . . . . . . . . . . . . . . 18 ((if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ if(𝑃𝐴, 𝐴, 𝑃))
200194, 198, 199syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ if(𝑃𝐴, 𝐴, 𝑃))
20111ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝐴 ∈ ℝ)
202 elinel2 4189 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐸𝐵) → 𝑥𝐵)
203202ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑥𝐵)
20411rexrd 11262 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℝ*)
205 pnfxr 11266 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
206 elioo2 13363 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
207204, 205, 206sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
20810eleq2i 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐵𝑥 ∈ (𝐴(,)+∞))
209 ltpnf 13098 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → 𝑥 < +∞)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 < +∞)
211210pm4.71i 559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 < +∞))
212 df-3an 1086 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 < +∞))
213211, 212bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
214207, 208, 2133bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐵 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
215 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝐴 < 𝑥)
216214, 215syl6bi 253 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵𝐴 < 𝑥))
217216ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (𝑥𝐵𝐴 < 𝑥))
218203, 217mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝐴 < 𝑥)
219201, 197, 218ltled 11360 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝐴𝑥)
220 simprr 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑃𝑥)
221 breq1 5142 . . . . . . . . . . . . . . . . . . 19 (𝐴 = if(𝑃𝐴, 𝐴, 𝑃) → (𝐴𝑥 ↔ if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥))
222 breq1 5142 . . . . . . . . . . . . . . . . . . 19 (𝑃 = if(𝑃𝐴, 𝐴, 𝑃) → (𝑃𝑥 ↔ if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥))
223221, 222ifboth 4560 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑥𝑃𝑥) → if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥)
224219, 220, 223syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥)
225193, 194, 197, 200, 224letrd 11369 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑥)
226192, 225eqbrtrd 5161 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (1st ‘(𝐺𝑛)) ≤ 𝑥)
227226expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃𝑥 → (1st ‘(𝐺𝑛)) ≤ 𝑥))
228178, 227syld 47 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥 → (1st ‘(𝐺𝑛)) ≤ 𝑥))
229168, 228biimtrrid 242 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < 𝑥 → (1st ‘(𝐺𝑛)) ≤ 𝑥))
23020breq2i 5147 . . . . . . . . . . . . . 14 (𝑥 < 𝑄𝑥 < (2nd ‘(𝐹𝑛)))
231187adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
232 ltle 11300 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑄 ∈ ℝ) → (𝑥 < 𝑄𝑥𝑄))
233176, 231, 232syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄𝑥𝑄))
234230, 233biimtrrid 242 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹𝑛)) → 𝑥𝑄))
235182fveq2d 6886 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
236 op2ndg 7982 . . . . . . . . . . . . . . . . 17 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
237188, 187, 236syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
238235, 237eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = 𝑄)
239238adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = 𝑄)
240239breq2d 5151 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥𝑄))
241234, 240sylibrd 259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹𝑛)) → 𝑥 ≤ (2nd ‘(𝐺𝑛))))
242229, 241anim12d 608 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
243242reximdva 3160 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐸𝐵)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
244243ralimdva 3159 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
245167, 244syl5 34 . . . . . . . 8 (𝜑 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
246 ovolfioo 25320 . . . . . . . . 9 ((𝐸 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐸 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
2472, 16, 246syl2anc 583 . . . . . . . 8 (𝜑 → (𝐸 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
248 ovolficc 25321 . . . . . . . . 9 (((𝐸𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
249174, 27, 248syl2anc 583 . . . . . . . 8 (𝜑 → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
250245, 247, 2493imtr4d 294 . . . . . . 7 (𝜑 → (𝐸 ran ((,) ∘ 𝐹) → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐺)))
25117, 250mpd 15 . . . . . 6 (𝜑 → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐺))
25214ovollb2 25342 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐸𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑇, ℝ*, < ))
25327, 251, 252syl2anc 583 . . . . 5 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑇, ℝ*, < ))
254 supxrre 13304 . . . . . 6 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
25533, 40, 130, 254syl3anc 1368 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
256253, 255breqtrd 5165 . . . 4 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑇, ℝ, < ))
257 ssralv 4043 . . . . . . . . . 10 ((𝐸𝐵) ⊆ 𝐸 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
2586, 257ax-mp 5 . . . . . . . . 9 (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
259172adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
2606, 2sstrid 3986 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸𝐵) ⊆ ℝ)
261260sselda 3975 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐸𝐵)) → 𝑥 ∈ ℝ)
262261adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
263259, 262, 177syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥𝑃𝑥))
264168, 263biimtrrid 242 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < 𝑥𝑃𝑥))
265 opex 5455 . . . . . . . . . . . . . . . . . 18 𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V
26622fvmpt2 7000 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
267179, 265, 266sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
268267fveq2d 6886 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
269 op1stg 7981 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
270172, 188, 269syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
271268, 270eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = 𝑃)
272271adantlr 712 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = 𝑃)
273272breq1d 5149 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑃𝑥))
274264, 273sylibrd 259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < 𝑥 → (1st ‘(𝐻𝑛)) ≤ 𝑥))
275187adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
276262, 275, 232syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄𝑥𝑄))
277260ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝐸𝐵) ⊆ ℝ)
278 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ∈ (𝐸𝐵))
279277, 278sseldd 3976 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ∈ ℝ)
28011ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝐴 ∈ ℝ)
281172ad2ant2r 744 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑃 ∈ ℝ)
282280, 281ifcld 4567 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
283 eldifn 4120 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐸𝐵) → ¬ 𝑥𝐵)
284283ad2antlr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → ¬ 𝑥𝐵)
285279biantrurd 532 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝐴 < 𝑥 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
286214ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝑥𝐵 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
287285, 286bitr4d 282 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝐴 < 𝑥𝑥𝐵))
288284, 287mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → ¬ 𝐴 < 𝑥)
289279, 280, 288nltled 11362 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥𝐴)
290 max2 13164 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(𝑃𝐴, 𝐴, 𝑃))
291281, 280, 290syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝐴 ≤ if(𝑃𝐴, 𝐴, 𝑃))
292279, 280, 282, 289, 291letrd 11369 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ≤ if(𝑃𝐴, 𝐴, 𝑃))
293 simprr 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥𝑄)
294 breq2 5143 . . . . . . . . . . . . . . . . . 18 (if(𝑃𝐴, 𝐴, 𝑃) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑥 ≤ if(𝑃𝐴, 𝐴, 𝑃) ↔ 𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
295 breq2 5143 . . . . . . . . . . . . . . . . . 18 (𝑄 = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑥𝑄𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
296294, 295ifboth 4560 . . . . . . . . . . . . . . . . 17 ((𝑥 ≤ if(𝑃𝐴, 𝐴, 𝑃) ∧ 𝑥𝑄) → 𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
297292, 293, 296syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
298267fveq2d 6886 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
299 op2ndg 7982 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
300172, 188, 299syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
301298, 300eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
302301ad2ant2r 744 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (2nd ‘(𝐻𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
303297, 302breqtrrd 5167 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ≤ (2nd ‘(𝐻𝑛)))
304303expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥𝑄𝑥 ≤ (2nd ‘(𝐻𝑛))))
305276, 304syld 47 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄𝑥 ≤ (2nd ‘(𝐻𝑛))))
306230, 305biimtrrid 242 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹𝑛)) → 𝑥 ≤ (2nd ‘(𝐻𝑛))))
307274, 306anim12d 608 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
308307reximdva 3160 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐸𝐵)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
309308ralimdva 3159 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
310258, 309syl5 34 . . . . . . . 8 (𝜑 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
311 ovolficc 25321 . . . . . . . . 9 (((𝐸𝐵) ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐻) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
312260, 66, 311syl2anc 583 . . . . . . . 8 (𝜑 → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐻) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
313310, 247, 3123imtr4d 294 . . . . . . 7 (𝜑 → (𝐸 ran ((,) ∘ 𝐹) → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐻)))
31417, 313mpd 15 . . . . . 6 (𝜑 → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐻))
31515ovollb2 25342 . . . . . 6 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐸𝐵) ⊆ ran ([,] ∘ 𝐻)) → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑈, ℝ*, < ))
31666, 314, 315syl2anc 583 . . . . 5 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑈, ℝ*, < ))
317 supxrre 13304 . . . . . 6 ((ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑥) → sup(ran 𝑈, ℝ*, < ) = sup(ran 𝑈, ℝ, < ))
318135, 141, 164, 317syl3anc 1368 . . . . 5 (𝜑 → sup(ran 𝑈, ℝ*, < ) = sup(ran 𝑈, ℝ, < ))
319316, 318breqtrd 5165 . . . 4 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑈, ℝ, < ))
3205, 8, 131, 165, 256, 319le2addd 11831 . . 3 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )))
321 eqidd 2725 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐺)‘𝑛))
32250, 14, 84, 321, 57, 147, 124isumsup2 15790 . . . . 5 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ, < ))
323 seqex 13966 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐹)) ∈ V
32413, 323eqeltri 2821 . . . . . 6 𝑆 ∈ V
325324a1i 11 . . . . 5 (𝜑𝑆 ∈ V)
326 eqidd 2725 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = (((abs ∘ − ) ∘ 𝐻)‘𝑛))
32750, 15, 84, 326, 74, 73, 158isumsup2 15790 . . . . 5 (𝜑𝑈 ⇝ sup(ran 𝑈, ℝ, < ))
32842recnd 11240 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℂ)
329143recnd 11240 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ∈ ℂ)
33057recnd 11240 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℂ)
33152, 53, 330syl2an 595 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℂ)
33274recnd 11240 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℂ)
33352, 53, 332syl2an 595 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℂ)
33477eqcomd 2730 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
33552, 53, 334syl2an 595 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
33651, 331, 333, 335seradd 14008 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗) = ((seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗) + (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗)))
33781, 153oveq12i 7414 . . . . . 6 ((𝑇𝑗) + (𝑈𝑗)) = ((seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗) + (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗))
338336, 82, 3373eqtr4g 2789 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) = ((𝑇𝑗) + (𝑈𝑗)))
33950, 84, 322, 325, 327, 328, 329, 338climadd 15574 . . . 4 (𝜑𝑆 ⇝ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )))
340 climuni 15494 . . . 4 ((𝑆 ⇝ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) ∧ 𝑆 ⇝ sup(ran 𝑆, ℝ*, < )) → (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) = sup(ran 𝑆, ℝ*, < ))
341339, 114, 340syl2anc 583 . . 3 (𝜑 → (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) = sup(ran 𝑆, ℝ*, < ))
342320, 341breqtrd 5165 . 2 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ sup(ran 𝑆, ℝ*, < ))
3439, 23, 25, 342, 18letrd 11369 1 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ ((vol*‘𝐸) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  Vcvv 3466  cdif 3938  cin 3940  wss 3941  c0 4315  ifcif 4521  cop 4627   cuni 4900   class class class wbr 5139  cmpt 5222   × cxp 5665  dom cdm 5667  ran crn 5668  ccom 5671   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  1st c1st 7967  2nd c2nd 7968  supcsup 9432  cc 11105  cr 11106  0cc0 11107  1c1 11108   + caddc 11110  +∞cpnf 11243  *cxr 11245   < clt 11246  cle 11247  cmin 11442  cn 12210  cuz 12820  +crp 12972  (,)cioo 13322  [,)cico 13324  [,]cicc 13325  ...cfz 13482  seqcseq 13964  abscabs 15179  cli 15426  vol*covol 25315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-q 12931  df-rp 12973  df-ioo 13326  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-fl 13755  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-clim 15430  df-rlim 15431  df-sum 15631  df-ovol 25317
This theorem is referenced by:  ioombl1  25415
  Copyright terms: Public domain W3C validator