MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem4 Structured version   Visualization version   GIF version

Theorem ioombl1lem4 25519
Description: Lemma for ioombl1 25520. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem4 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ ((vol*‘𝐸) + 𝐶))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem4
Dummy variables 𝑥 𝑗 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4217 . . . 4 (𝐸𝐵) ⊆ 𝐸
2 ioombl1.e . . . 4 (𝜑𝐸 ⊆ ℝ)
3 ioombl1.v . . . 4 (𝜑 → (vol*‘𝐸) ∈ ℝ)
4 ovolsscl 25444 . . . 4 (((𝐸𝐵) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐵)) ∈ ℝ)
51, 2, 3, 4mp3an2i 1468 . . 3 (𝜑 → (vol*‘(𝐸𝐵)) ∈ ℝ)
6 difss 4116 . . . 4 (𝐸𝐵) ⊆ 𝐸
7 ovolsscl 25444 . . . 4 (((𝐸𝐵) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸𝐵)) ∈ ℝ)
86, 2, 3, 7mp3an2i 1468 . . 3 (𝜑 → (vol*‘(𝐸𝐵)) ∈ ℝ)
95, 8readdcld 11269 . 2 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ∈ ℝ)
10 ioombl1.b . . 3 𝐵 = (𝐴(,)+∞)
11 ioombl1.a . . 3 (𝜑𝐴 ∈ ℝ)
12 ioombl1.c . . 3 (𝜑𝐶 ∈ ℝ+)
13 ioombl1.s . . 3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
14 ioombl1.t . . 3 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
15 ioombl1.u . . 3 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
16 ioombl1.f1 . . 3 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
17 ioombl1.f2 . . 3 (𝜑𝐸 ran ((,) ∘ 𝐹))
18 ioombl1.f3 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
19 ioombl1.p . . 3 𝑃 = (1st ‘(𝐹𝑛))
20 ioombl1.q . . 3 𝑄 = (2nd ‘(𝐹𝑛))
21 ioombl1.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
22 ioombl1.h . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
2310, 11, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22ioombl1lem2 25517 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
2412rpred 13056 . . 3 (𝜑𝐶 ∈ ℝ)
253, 24readdcld 11269 . 2 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
2610, 11, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22ioombl1lem1 25516 . . . . . . . . 9 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2726simpld 494 . . . . . . . 8 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 eqid 2736 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
2928, 14ovolsf 25430 . . . . . . . 8 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
3027, 29syl 17 . . . . . . 7 (𝜑𝑇:ℕ⟶(0[,)+∞))
3130frnd 6719 . . . . . 6 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
32 rge0ssre 13478 . . . . . 6 (0[,)+∞) ⊆ ℝ
3331, 32sstrdi 3976 . . . . 5 (𝜑 → ran 𝑇 ⊆ ℝ)
34 1nn 12256 . . . . . . . 8 1 ∈ ℕ
3530fdmd 6721 . . . . . . . 8 (𝜑 → dom 𝑇 = ℕ)
3634, 35eleqtrrid 2842 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑇)
3736ne0d 4322 . . . . . 6 (𝜑 → dom 𝑇 ≠ ∅)
38 dm0rn0 5909 . . . . . . 7 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
3938necon3bii 2985 . . . . . 6 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
4037, 39sylib 218 . . . . 5 (𝜑 → ran 𝑇 ≠ ∅)
4130ffvelcdmda 7079 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ (0[,)+∞))
4232, 41sselid 3961 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℝ)
43 eqid 2736 . . . . . . . . . . . . 13 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
4443, 13ovolsf 25430 . . . . . . . . . . . 12 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
4516, 44syl 17 . . . . . . . . . . 11 (𝜑𝑆:ℕ⟶(0[,)+∞))
4645ffvelcdmda 7079 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) ∈ (0[,)+∞))
4732, 46sselid 3961 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) ∈ ℝ)
4823adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
50 nnuz 12900 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2845 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
52 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝜑)
53 elfznn 13575 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
5428ovolfsf 25429 . . . . . . . . . . . . . . 15 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
5527, 54syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞))
5655ffvelcdmda 7079 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ (0[,)+∞))
5732, 56sselid 3961 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ)
5852, 53, 57syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ)
5943ovolfsf 25429 . . . . . . . . . . . . . . . 16 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
6016, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞))
6160ffvelcdmda 7079 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ (0[,)+∞))
62 elrege0 13476 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)))
6361, 62sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛)))
6463simpld 494 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ)
6552, 53, 64syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ)
6626simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
67 eqid 2736 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
6867ovolfsf 25429 . . . . . . . . . . . . . . . . . 18 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞))
6966, 68syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞))
7069ffvelcdmda 7079 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ (0[,)+∞))
71 elrege0 13476 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
7270, 71sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
7372simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛))
7472simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ)
7557, 74addge01d 11830 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (0 ≤ (((abs ∘ − ) ∘ 𝐻)‘𝑛) ↔ (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))))
7673, 75mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
7710, 11, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22ioombl1lem3 25518 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
7876, 77breqtrd 5150 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
7952, 53, 78syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
8051, 58, 65, 79serle 14080 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗))
8114fveq1i 6882 . . . . . . . . . 10 (𝑇𝑗) = (seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗)
8213fveq1i 6882 . . . . . . . . . 10 (𝑆𝑗) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗)
8380, 81, 823brtr4g 5158 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ≤ (𝑆𝑗))
84 1zzd 12628 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
85 eqidd 2737 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = (((abs ∘ − ) ∘ 𝐹)‘𝑛))
8663simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
8745frnd 6719 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
88 icossxr 13454 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ ℝ*
8987, 88sstrdi 3976 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran 𝑆 ⊆ ℝ*)
9089adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ*)
9145ffnd 6712 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆 Fn ℕ)
92 fnfvelrn 7075 . . . . . . . . . . . . . . . . . . 19 ((𝑆 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
9391, 92sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ran 𝑆)
94 supxrub 13345 . . . . . . . . . . . . . . . . . 18 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆𝑘) ∈ ran 𝑆) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
9590, 93, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
9695ralrimiva 3133 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < ))
97 brralrspcev 5184 . . . . . . . . . . . . . . . 16 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥)
9823, 96, 97syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥)
9950, 13, 84, 85, 64, 86, 98isumsup2 15867 . . . . . . . . . . . . . 14 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
10087, 32sstrdi 3976 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ⊆ ℝ)
10145fdmd 6721 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝑆 = ℕ)
10234, 101eleqtrrid 2842 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ dom 𝑆)
103102ne0d 4322 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 ≠ ∅)
104 dm0rn0 5909 . . . . . . . . . . . . . . . . 17 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
105104necon3bii 2985 . . . . . . . . . . . . . . . 16 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
106103, 105sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝑆 ≠ ∅)
107 breq1 5127 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑆𝑘) → (𝑧𝑥 ↔ (𝑆𝑘) ≤ 𝑥))
108107ralrn 7083 . . . . . . . . . . . . . . . . . 18 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
10991, 108syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
110109rexbidv 3165 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ 𝑥))
11198, 110mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥)
112 supxrre 13348 . . . . . . . . . . . . . . 15 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑆 𝑧𝑥) → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
113100, 106, 111, 112syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran 𝑆, ℝ, < ))
11499, 113breqtrrd 5152 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ*, < ))
115114adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑆 ⇝ sup(ran 𝑆, ℝ*, < ))
11613, 115eqbrtrrid 5160 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇝ sup(ran 𝑆, ℝ*, < ))
11764adantlr 715 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) ∈ ℝ)
11886adantlr 715 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
11950, 49, 116, 117, 118climserle 15684 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
12082, 119eqbrtrid 5159 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
12142, 47, 48, 83, 120letrd 11397 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
122121ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
123 brralrspcev 5184 . . . . . . 7 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥)
12423, 122, 123syl2anc 584 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥)
12530ffnd 6712 . . . . . . . 8 (𝜑𝑇 Fn ℕ)
126 breq1 5127 . . . . . . . . 9 (𝑧 = (𝑇𝑗) → (𝑧𝑥 ↔ (𝑇𝑗) ≤ 𝑥))
127126ralrn 7083 . . . . . . . 8 (𝑇 Fn ℕ → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥))
128125, 127syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥))
129128rexbidv 3165 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑇𝑗) ≤ 𝑥))
130124, 129mpbird 257 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥)
13133, 40, 130suprcld 12210 . . . 4 (𝜑 → sup(ran 𝑇, ℝ, < ) ∈ ℝ)
13267, 15ovolsf 25430 . . . . . . . 8 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞))
13366, 132syl 17 . . . . . . 7 (𝜑𝑈:ℕ⟶(0[,)+∞))
134133frnd 6719 . . . . . 6 (𝜑 → ran 𝑈 ⊆ (0[,)+∞))
135134, 32sstrdi 3976 . . . . 5 (𝜑 → ran 𝑈 ⊆ ℝ)
136133fdmd 6721 . . . . . . . 8 (𝜑 → dom 𝑈 = ℕ)
13734, 136eleqtrrid 2842 . . . . . . 7 (𝜑 → 1 ∈ dom 𝑈)
138137ne0d 4322 . . . . . 6 (𝜑 → dom 𝑈 ≠ ∅)
139 dm0rn0 5909 . . . . . . 7 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
140139necon3bii 2985 . . . . . 6 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
141138, 140sylib 218 . . . . 5 (𝜑 → ran 𝑈 ≠ ∅)
142133ffvelcdmda 7079 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ∈ (0[,)+∞))
14332, 142sselid 3961 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ∈ ℝ)
14452, 53, 74syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℝ)
145 elrege0 13476 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ (0[,)+∞) ↔ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛)))
14656, 145sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℝ ∧ 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛)))
147146simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛))
14874, 57addge02d 11831 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (0 ≤ (((abs ∘ − ) ∘ 𝐺)‘𝑛) ↔ (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛))))
149147, 148mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
150149, 77breqtrd 5150 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
15152, 53, 150syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ≤ (((abs ∘ − ) ∘ 𝐹)‘𝑛))
15251, 144, 65, 151serle 14080 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗))
15315fveq1i 6882 . . . . . . . . . 10 (𝑈𝑗) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗)
154152, 153, 823brtr4g 5158 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ≤ (𝑆𝑗))
155143, 47, 48, 154, 120letrd 11397 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
156155ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ sup(ran 𝑆, ℝ*, < ))
157 brralrspcev 5184 . . . . . . 7 ((sup(ran 𝑆, ℝ*, < ) ∈ ℝ ∧ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ sup(ran 𝑆, ℝ*, < )) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥)
15823, 156, 157syl2anc 584 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥)
159133ffnd 6712 . . . . . . . 8 (𝜑𝑈 Fn ℕ)
160 breq1 5127 . . . . . . . . 9 (𝑧 = (𝑈𝑗) → (𝑧𝑥 ↔ (𝑈𝑗) ≤ 𝑥))
161160ralrn 7083 . . . . . . . 8 (𝑈 Fn ℕ → (∀𝑧 ∈ ran 𝑈 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥))
162159, 161syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧𝑥 ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥))
163162rexbidv 3165 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ 𝑥))
164158, 163mpbird 257 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑥)
165135, 141, 164suprcld 12210 . . . 4 (𝜑 → sup(ran 𝑈, ℝ, < ) ∈ ℝ)
166 ssralv 4032 . . . . . . . . . 10 ((𝐸𝐵) ⊆ 𝐸 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
1671, 166ax-mp 5 . . . . . . . . 9 (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
16819breq1i 5131 . . . . . . . . . . . . 13 (𝑃 < 𝑥 ↔ (1st ‘(𝐹𝑛)) < 𝑥)
169 ovolfcl 25424 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
17016, 169sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
171170simp1d 1142 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
17219, 171eqeltrid 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
173172adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
1741, 2sstrid 3975 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸𝐵) ⊆ ℝ)
175174sselda 3963 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐸𝐵)) → 𝑥 ∈ ℝ)
176175adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
177 ltle 11328 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑃 < 𝑥𝑃𝑥))
178173, 176, 177syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥𝑃𝑥))
179 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
180 opex 5444 . . . . . . . . . . . . . . . . . . . 20 ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V
18121fvmpt2 7002 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ V) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
182179, 180, 181sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
183182fveq2d 6885 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
18411adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
185184, 172ifcld 4552 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
186170simp2d 1143 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
18720, 186eqeltrid 2839 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
188185, 187ifcld 4552 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
189 op1stg 8005 . . . . . . . . . . . . . . . . . . 19 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
190188, 187, 189syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
191183, 190eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
192191ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (1st ‘(𝐺𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
193188ad2ant2r 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
194185ad2ant2r 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
195174ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (𝐸𝐵) ⊆ ℝ)
196 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑥 ∈ (𝐸𝐵))
197195, 196sseldd 3964 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑥 ∈ ℝ)
198187ad2ant2r 747 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑄 ∈ ℝ)
199 min1 13210 . . . . . . . . . . . . . . . . . 18 ((if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ if(𝑃𝐴, 𝐴, 𝑃))
200194, 198, 199syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ if(𝑃𝐴, 𝐴, 𝑃))
20111ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝐴 ∈ ℝ)
202 elinel2 4182 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐸𝐵) → 𝑥𝐵)
203202ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑥𝐵)
20411rexrd 11290 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℝ*)
205 pnfxr 11294 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
206 elioo2 13408 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
207204, 205, 206sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
20810eleq2i 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐵𝑥 ∈ (𝐴(,)+∞))
209 ltpnf 13141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → 𝑥 < +∞)
210209adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 < +∞)
211210pm4.71i 559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 < +∞))
212 df-3an 1088 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ∧ 𝑥 < +∞))
213211, 212bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
214207, 208, 2133bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐵 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
215 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝐴 < 𝑥)
216214, 215biimtrdi 253 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥𝐵𝐴 < 𝑥))
217216ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (𝑥𝐵𝐴 < 𝑥))
218203, 217mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝐴 < 𝑥)
219201, 197, 218ltled 11388 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝐴𝑥)
220 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → 𝑃𝑥)
221 breq1 5127 . . . . . . . . . . . . . . . . . . 19 (𝐴 = if(𝑃𝐴, 𝐴, 𝑃) → (𝐴𝑥 ↔ if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥))
222 breq1 5127 . . . . . . . . . . . . . . . . . . 19 (𝑃 = if(𝑃𝐴, 𝐴, 𝑃) → (𝑃𝑥 ↔ if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥))
223221, 222ifboth 4545 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑥𝑃𝑥) → if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥)
224219, 220, 223syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑥)
225193, 194, 197, 200, 224letrd 11397 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑥)
226192, 225eqbrtrd 5146 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑃𝑥)) → (1st ‘(𝐺𝑛)) ≤ 𝑥)
227226expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃𝑥 → (1st ‘(𝐺𝑛)) ≤ 𝑥))
228178, 227syld 47 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥 → (1st ‘(𝐺𝑛)) ≤ 𝑥))
229168, 228biimtrrid 243 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < 𝑥 → (1st ‘(𝐺𝑛)) ≤ 𝑥))
23020breq2i 5132 . . . . . . . . . . . . . 14 (𝑥 < 𝑄𝑥 < (2nd ‘(𝐹𝑛)))
231187adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
232 ltle 11328 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑄 ∈ ℝ) → (𝑥 < 𝑄𝑥𝑄))
233176, 231, 232syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄𝑥𝑄))
234230, 233biimtrrid 243 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹𝑛)) → 𝑥𝑄))
235182fveq2d 6885 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩))
236 op2ndg 8006 . . . . . . . . . . . . . . . . 17 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
237188, 187, 236syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) = 𝑄)
238235, 237eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = 𝑄)
239238adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = 𝑄)
240239breq2d 5136 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 ≤ (2nd ‘(𝐺𝑛)) ↔ 𝑥𝑄))
241234, 240sylibrd 259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹𝑛)) → 𝑥 ≤ (2nd ‘(𝐺𝑛))))
242229, 241anim12d 609 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
243242reximdva 3154 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐸𝐵)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
244243ralimdva 3153 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
245167, 244syl5 34 . . . . . . . 8 (𝜑 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
246 ovolfioo 25425 . . . . . . . . 9 ((𝐸 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐸 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
2472, 16, 246syl2anc 584 . . . . . . . 8 (𝜑 → (𝐸 ran ((,) ∘ 𝐹) ↔ ∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
248 ovolficc 25426 . . . . . . . . 9 (((𝐸𝐵) ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
249174, 27, 248syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐺) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐺𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐺𝑛)))))
250245, 247, 2493imtr4d 294 . . . . . . 7 (𝜑 → (𝐸 ran ((,) ∘ 𝐹) → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐺)))
25117, 250mpd 15 . . . . . 6 (𝜑 → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐺))
25214ovollb2 25447 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐸𝐵) ⊆ ran ([,] ∘ 𝐺)) → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑇, ℝ*, < ))
25327, 251, 252syl2anc 584 . . . . 5 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑇, ℝ*, < ))
254 supxrre 13348 . . . . . 6 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑇 𝑧𝑥) → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
25533, 40, 130, 254syl3anc 1373 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) = sup(ran 𝑇, ℝ, < ))
256253, 255breqtrd 5150 . . . 4 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑇, ℝ, < ))
257 ssralv 4032 . . . . . . . . . 10 ((𝐸𝐵) ⊆ 𝐸 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛)))))
2586, 257ax-mp 5 . . . . . . . . 9 (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))))
259172adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
2606, 2sstrid 3975 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸𝐵) ⊆ ℝ)
261260sselda 3963 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐸𝐵)) → 𝑥 ∈ ℝ)
262261adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
263259, 262, 177syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑃 < 𝑥𝑃𝑥))
264168, 263biimtrrid 243 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < 𝑥𝑃𝑥))
265 opex 5444 . . . . . . . . . . . . . . . . . 18 𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V
26622fvmpt2 7002 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ V) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
267179, 265, 266sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) = ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
268267fveq2d 6885 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
269 op1stg 8005 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
270172, 188, 269syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (1st ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = 𝑃)
271268, 270eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = 𝑃)
272271adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝐻𝑛)) = 𝑃)
273272breq1d 5134 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑃𝑥))
274264, 273sylibrd 259 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) < 𝑥 → (1st ‘(𝐻𝑛)) ≤ 𝑥))
275187adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
276262, 275, 232syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄𝑥𝑄))
277260ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝐸𝐵) ⊆ ℝ)
278 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ∈ (𝐸𝐵))
279277, 278sseldd 3964 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ∈ ℝ)
28011ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝐴 ∈ ℝ)
281172ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑃 ∈ ℝ)
282280, 281ifcld 4552 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
283 eldifn 4112 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐸𝐵) → ¬ 𝑥𝐵)
284283ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → ¬ 𝑥𝐵)
285279biantrurd 532 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝐴 < 𝑥 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
286214ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝑥𝐵 ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
287285, 286bitr4d 282 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (𝐴 < 𝑥𝑥𝐵))
288284, 287mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → ¬ 𝐴 < 𝑥)
289279, 280, 288nltled 11390 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥𝐴)
290 max2 13208 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(𝑃𝐴, 𝐴, 𝑃))
291281, 280, 290syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝐴 ≤ if(𝑃𝐴, 𝐴, 𝑃))
292279, 280, 282, 289, 291letrd 11397 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ≤ if(𝑃𝐴, 𝐴, 𝑃))
293 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥𝑄)
294 breq2 5128 . . . . . . . . . . . . . . . . . 18 (if(𝑃𝐴, 𝐴, 𝑃) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑥 ≤ if(𝑃𝐴, 𝐴, 𝑃) ↔ 𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
295 breq2 5128 . . . . . . . . . . . . . . . . . 18 (𝑄 = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑥𝑄𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
296294, 295ifboth 4545 . . . . . . . . . . . . . . . . 17 ((𝑥 ≤ if(𝑃𝐴, 𝐴, 𝑃) ∧ 𝑥𝑄) → 𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
297292, 293, 296syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
298267fveq2d 6885 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩))
299 op2ndg 8006 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
300172, 188, 299syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → (2nd ‘⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
301298, 300eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐻𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
302301ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → (2nd ‘(𝐻𝑛)) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
303297, 302breqtrrd 5152 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ (𝑛 ∈ ℕ ∧ 𝑥𝑄)) → 𝑥 ≤ (2nd ‘(𝐻𝑛)))
304303expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥𝑄𝑥 ≤ (2nd ‘(𝐻𝑛))))
305276, 304syld 47 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑄𝑥 ≤ (2nd ‘(𝐻𝑛))))
306230, 305biimtrrid 243 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (𝑥 < (2nd ‘(𝐹𝑛)) → 𝑥 ≤ (2nd ‘(𝐻𝑛))))
307274, 306anim12d 609 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐸𝐵)) ∧ 𝑛 ∈ ℕ) → (((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
308307reximdva 3154 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐸𝐵)) → (∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
309308ralimdva 3153 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
310258, 309syl5 34 . . . . . . . 8 (𝜑 → (∀𝑥𝐸𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑥𝑥 < (2nd ‘(𝐹𝑛))) → ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
311 ovolficc 25426 . . . . . . . . 9 (((𝐸𝐵) ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐻) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
312260, 66, 311syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐸𝐵) ⊆ ran ([,] ∘ 𝐻) ↔ ∀𝑥 ∈ (𝐸𝐵)∃𝑛 ∈ ℕ ((1st ‘(𝐻𝑛)) ≤ 𝑥𝑥 ≤ (2nd ‘(𝐻𝑛)))))
313310, 247, 3123imtr4d 294 . . . . . . 7 (𝜑 → (𝐸 ran ((,) ∘ 𝐹) → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐻)))
31417, 313mpd 15 . . . . . 6 (𝜑 → (𝐸𝐵) ⊆ ran ([,] ∘ 𝐻))
31515ovollb2 25447 . . . . . 6 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐸𝐵) ⊆ ran ([,] ∘ 𝐻)) → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑈, ℝ*, < ))
31666, 314, 315syl2anc 584 . . . . 5 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑈, ℝ*, < ))
317 supxrre 13348 . . . . . 6 ((ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑥) → sup(ran 𝑈, ℝ*, < ) = sup(ran 𝑈, ℝ, < ))
318135, 141, 164, 317syl3anc 1373 . . . . 5 (𝜑 → sup(ran 𝑈, ℝ*, < ) = sup(ran 𝑈, ℝ, < ))
319316, 318breqtrd 5150 . . . 4 (𝜑 → (vol*‘(𝐸𝐵)) ≤ sup(ran 𝑈, ℝ, < ))
3205, 8, 131, 165, 256, 319le2addd 11861 . . 3 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )))
321 eqidd 2737 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) = (((abs ∘ − ) ∘ 𝐺)‘𝑛))
32250, 14, 84, 321, 57, 147, 124isumsup2 15867 . . . . 5 (𝜑𝑇 ⇝ sup(ran 𝑇, ℝ, < ))
323 seqex 14026 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝐹)) ∈ V
32413, 323eqeltri 2831 . . . . . 6 𝑆 ∈ V
325324a1i 11 . . . . 5 (𝜑𝑆 ∈ V)
326 eqidd 2737 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) = (((abs ∘ − ) ∘ 𝐻)‘𝑛))
32750, 15, 84, 326, 74, 73, 158isumsup2 15867 . . . . 5 (𝜑𝑈 ⇝ sup(ran 𝑈, ℝ, < ))
32842recnd 11268 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℂ)
329143recnd 11268 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ∈ ℂ)
33057recnd 11268 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℂ)
33152, 53, 330syl2an 596 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐺)‘𝑛) ∈ ℂ)
33274recnd 11268 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℂ)
33352, 53, 332syl2an 596 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐻)‘𝑛) ∈ ℂ)
33477eqcomd 2742 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
33552, 53, 334syl2an 596 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (((abs ∘ − ) ∘ 𝐹)‘𝑛) = ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)))
33651, 331, 333, 335seradd 14067 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑗) = ((seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗) + (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗)))
33781, 153oveq12i 7422 . . . . . 6 ((𝑇𝑗) + (𝑈𝑗)) = ((seq1( + , ((abs ∘ − ) ∘ 𝐺))‘𝑗) + (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘𝑗))
338336, 82, 3373eqtr4g 2796 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑆𝑗) = ((𝑇𝑗) + (𝑈𝑗)))
33950, 84, 322, 325, 327, 328, 329, 338climadd 15653 . . . 4 (𝜑𝑆 ⇝ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )))
340 climuni 15573 . . . 4 ((𝑆 ⇝ (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) ∧ 𝑆 ⇝ sup(ran 𝑆, ℝ*, < )) → (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) = sup(ran 𝑆, ℝ*, < ))
341339, 114, 340syl2anc 584 . . 3 (𝜑 → (sup(ran 𝑇, ℝ, < ) + sup(ran 𝑈, ℝ, < )) = sup(ran 𝑆, ℝ*, < ))
342320, 341breqtrd 5150 . 2 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ sup(ran 𝑆, ℝ*, < ))
3439, 23, 25, 342, 18letrd 11397 1 (𝜑 → ((vol*‘(𝐸𝐵)) + (vol*‘(𝐸𝐵))) ≤ ((vol*‘𝐸) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cin 3930  wss 3931  c0 4313  ifcif 4505  cop 4612   cuni 4888   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471  cn 12245  cuz 12857  +crp 13013  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  ...cfz 13529  seqcseq 14024  abscabs 15258  cli 15505  vol*covol 25420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-ovol 25422
This theorem is referenced by:  ioombl1  25520
  Copyright terms: Public domain W3C validator