![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumsup2 | Structured version Visualization version GIF version |
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
Ref | Expression |
---|---|
isumsup.1 | β’ π = (β€β₯βπ) |
isumsup.2 | β’ πΊ = seqπ( + , πΉ) |
isumsup.3 | β’ (π β π β β€) |
isumsup.4 | β’ ((π β§ π β π) β (πΉβπ) = π΄) |
isumsup.5 | β’ ((π β§ π β π) β π΄ β β) |
isumsup.6 | β’ ((π β§ π β π) β 0 β€ π΄) |
isumsup.7 | β’ (π β βπ₯ β β βπ β π (πΊβπ) β€ π₯) |
Ref | Expression |
---|---|
isumsup2 | β’ (π β πΊ β sup(ran πΊ, β, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | . 2 β’ π = (β€β₯βπ) | |
2 | isumsup.3 | . 2 β’ (π β π β β€) | |
3 | isumsup.4 | . . . . 5 β’ ((π β§ π β π) β (πΉβπ) = π΄) | |
4 | isumsup.5 | . . . . 5 β’ ((π β§ π β π) β π΄ β β) | |
5 | 3, 4 | eqeltrd 2833 | . . . 4 β’ ((π β§ π β π) β (πΉβπ) β β) |
6 | 1, 2, 5 | serfre 13993 | . . 3 β’ (π β seqπ( + , πΉ):πβΆβ) |
7 | isumsup.2 | . . . 4 β’ πΊ = seqπ( + , πΉ) | |
8 | 7 | feq1i 6705 | . . 3 β’ (πΊ:πβΆβ β seqπ( + , πΉ):πβΆβ) |
9 | 6, 8 | sylibr 233 | . 2 β’ (π β πΊ:πβΆβ) |
10 | simpr 485 | . . . . 5 β’ ((π β§ π β π) β π β π) | |
11 | 10, 1 | eleqtrdi 2843 | . . . 4 β’ ((π β§ π β π) β π β (β€β₯βπ)) |
12 | eluzelz 12828 | . . . . 5 β’ (π β (β€β₯βπ) β π β β€) | |
13 | uzid 12833 | . . . . 5 β’ (π β β€ β π β (β€β₯βπ)) | |
14 | peano2uz 12881 | . . . . 5 β’ (π β (β€β₯βπ) β (π + 1) β (β€β₯βπ)) | |
15 | 11, 12, 13, 14 | 4syl 19 | . . . 4 β’ ((π β§ π β π) β (π + 1) β (β€β₯βπ)) |
16 | simpl 483 | . . . . 5 β’ ((π β§ π β π) β π) | |
17 | elfzuz 13493 | . . . . . 6 β’ (π β (π...(π + 1)) β π β (β€β₯βπ)) | |
18 | 17, 1 | eleqtrrdi 2844 | . . . . 5 β’ (π β (π...(π + 1)) β π β π) |
19 | 16, 18, 5 | syl2an 596 | . . . 4 β’ (((π β§ π β π) β§ π β (π...(π + 1))) β (πΉβπ) β β) |
20 | 1 | peano2uzs 12882 | . . . . . . 7 β’ (π β π β (π + 1) β π) |
21 | 20 | adantl 482 | . . . . . 6 β’ ((π β§ π β π) β (π + 1) β π) |
22 | elfzuz 13493 | . . . . . 6 β’ (π β ((π + 1)...(π + 1)) β π β (β€β₯β(π + 1))) | |
23 | 1 | uztrn2 12837 | . . . . . 6 β’ (((π + 1) β π β§ π β (β€β₯β(π + 1))) β π β π) |
24 | 21, 22, 23 | syl2an 596 | . . . . 5 β’ (((π β§ π β π) β§ π β ((π + 1)...(π + 1))) β π β π) |
25 | isumsup.6 | . . . . . . 7 β’ ((π β§ π β π) β 0 β€ π΄) | |
26 | 25, 3 | breqtrrd 5175 | . . . . . 6 β’ ((π β§ π β π) β 0 β€ (πΉβπ)) |
27 | 26 | adantlr 713 | . . . . 5 β’ (((π β§ π β π) β§ π β π) β 0 β€ (πΉβπ)) |
28 | 24, 27 | syldan 591 | . . . 4 β’ (((π β§ π β π) β§ π β ((π + 1)...(π + 1))) β 0 β€ (πΉβπ)) |
29 | 11, 15, 19, 28 | sermono 13996 | . . 3 β’ ((π β§ π β π) β (seqπ( + , πΉ)βπ) β€ (seqπ( + , πΉ)β(π + 1))) |
30 | 7 | fveq1i 6889 | . . 3 β’ (πΊβπ) = (seqπ( + , πΉ)βπ) |
31 | 7 | fveq1i 6889 | . . 3 β’ (πΊβ(π + 1)) = (seqπ( + , πΉ)β(π + 1)) |
32 | 29, 30, 31 | 3brtr4g 5181 | . 2 β’ ((π β§ π β π) β (πΊβπ) β€ (πΊβ(π + 1))) |
33 | isumsup.7 | . 2 β’ (π β βπ₯ β β βπ β π (πΊβπ) β€ π₯) | |
34 | 1, 2, 9, 32, 33 | climsup 15612 | 1 β’ (π β πΊ β sup(ran πΊ, β, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 class class class wbr 5147 ran crn 5676 βΆwf 6536 βcfv 6540 (class class class)co 7405 supcsup 9431 βcr 11105 0cc0 11106 1c1 11107 + caddc 11109 < clt 11244 β€ cle 11245 β€cz 12554 β€β₯cuz 12818 ...cfz 13480 seqcseq 13962 β cli 15424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 |
This theorem is referenced by: isumsup 15789 ovoliunlem1 25010 ioombl1lem4 25069 uniioombllem2 25091 uniioombllem6 25096 sge0isum 45129 |
Copyright terms: Public domain | W3C validator |