![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumsup2 | Structured version Visualization version GIF version |
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
Ref | Expression |
---|---|
isumsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumsup.2 | ⊢ 𝐺 = seq𝑀( + , 𝐹) |
isumsup.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumsup.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumsup.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
isumsup.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) |
isumsup.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) |
Ref | Expression |
---|---|
isumsup2 | ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumsup.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumsup.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumsup.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2844 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
6 | 1, 2, 5 | serfre 14082 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
7 | isumsup.2 | . . . 4 ⊢ 𝐺 = seq𝑀( + , 𝐹) | |
8 | 7 | feq1i 6738 | . . 3 ⊢ (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ) |
9 | 6, 8 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
10 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
11 | 10, 1 | eleqtrdi 2854 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
12 | eluzelz 12913 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
13 | uzid 12918 | . . . . 5 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
14 | peano2uz 12966 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑗) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) | |
15 | 11, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) |
16 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
17 | elfzuz 13580 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
18 | 17, 1 | eleqtrrdi 2855 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ 𝑍) |
19 | 16, 18, 5 | syl2an 595 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℝ) |
20 | 1 | peano2uzs 12967 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
22 | elfzuz 13580 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) | |
23 | 1 | uztrn2 12922 | . . . . . 6 ⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
24 | 21, 22, 23 | syl2an 595 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
25 | isumsup.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) | |
26 | 25, 3 | breqtrrd 5194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
27 | 26 | adantlr 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
28 | 24, 27 | syldan 590 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹‘𝑘)) |
29 | 11, 15, 19, 28 | sermono 14085 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
30 | 7 | fveq1i 6921 | . . 3 ⊢ (𝐺‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗) |
31 | 7 | fveq1i 6921 | . . 3 ⊢ (𝐺‘(𝑗 + 1)) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)) |
32 | 29, 30, 31 | 3brtr4g 5200 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ≤ (𝐺‘(𝑗 + 1))) |
33 | isumsup.7 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) | |
34 | 1, 2, 9, 32, 33 | climsup 15718 | 1 ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 |
This theorem is referenced by: isumsup 15895 ovoliunlem1 25556 ioombl1lem4 25615 uniioombllem2 25637 uniioombllem6 25642 sge0isum 46348 |
Copyright terms: Public domain | W3C validator |