![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumsup2 | Structured version Visualization version GIF version |
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
Ref | Expression |
---|---|
isumsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumsup.2 | ⊢ 𝐺 = seq𝑀( + , 𝐹) |
isumsup.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumsup.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumsup.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
isumsup.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) |
isumsup.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) |
Ref | Expression |
---|---|
isumsup2 | ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumsup.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumsup.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumsup.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2859 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
6 | 1, 2, 5 | serfre 13212 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
7 | isumsup.2 | . . . 4 ⊢ 𝐺 = seq𝑀( + , 𝐹) | |
8 | 7 | feq1i 6332 | . . 3 ⊢ (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ) |
9 | 6, 8 | sylibr 226 | . 2 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
10 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
11 | 10, 1 | syl6eleq 2869 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
12 | eluzelz 12066 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
13 | uzid 12071 | . . . . 5 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
14 | peano2uz 12113 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑗) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) | |
15 | 11, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) |
16 | simpl 475 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
17 | elfzuz 12718 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
18 | 17, 1 | syl6eleqr 2870 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ 𝑍) |
19 | 16, 18, 5 | syl2an 587 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℝ) |
20 | 1 | peano2uzs 12114 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
21 | 20 | adantl 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
22 | elfzuz 12718 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) | |
23 | 1 | uztrn2 12074 | . . . . . 6 ⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
24 | 21, 22, 23 | syl2an 587 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
25 | isumsup.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) | |
26 | 25, 3 | breqtrrd 4953 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
27 | 26 | adantlr 703 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
28 | 24, 27 | syldan 583 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹‘𝑘)) |
29 | 11, 15, 19, 28 | sermono 13215 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
30 | 7 | fveq1i 6497 | . . 3 ⊢ (𝐺‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗) |
31 | 7 | fveq1i 6497 | . . 3 ⊢ (𝐺‘(𝑗 + 1)) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)) |
32 | 29, 30, 31 | 3brtr4g 4959 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ≤ (𝐺‘(𝑗 + 1))) |
33 | isumsup.7 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) | |
34 | 1, 2, 9, 32, 33 | climsup 14885 | 1 ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 class class class wbr 4925 ran crn 5404 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 supcsup 8697 ℝcr 10332 0cc0 10333 1c1 10334 + caddc 10336 < clt 10472 ≤ cle 10473 ℤcz 11791 ℤ≥cuz 12056 ...cfz 12706 seqcseq 13182 ⇝ cli 14700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-fz 12707 df-seq 13183 df-exp 13243 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-clim 14704 |
This theorem is referenced by: isumsup 15060 ovoliunlem1 23821 ioombl1lem4 23880 uniioombllem2 23902 uniioombllem6 23907 sge0isum 42172 |
Copyright terms: Public domain | W3C validator |