Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isumsup2 | Structured version Visualization version GIF version |
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
Ref | Expression |
---|---|
isumsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumsup.2 | ⊢ 𝐺 = seq𝑀( + , 𝐹) |
isumsup.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumsup.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumsup.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
isumsup.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) |
isumsup.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) |
Ref | Expression |
---|---|
isumsup2 | ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumsup.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumsup.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumsup.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
6 | 1, 2, 5 | serfre 13857 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
7 | isumsup.2 | . . . 4 ⊢ 𝐺 = seq𝑀( + , 𝐹) | |
8 | 7 | feq1i 6646 | . . 3 ⊢ (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ) |
9 | 6, 8 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
10 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
11 | 10, 1 | eleqtrdi 2848 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
12 | eluzelz 12697 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
13 | uzid 12702 | . . . . 5 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
14 | peano2uz 12746 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑗) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) | |
15 | 11, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) |
16 | simpl 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
17 | elfzuz 13357 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
18 | 17, 1 | eleqtrrdi 2849 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ 𝑍) |
19 | 16, 18, 5 | syl2an 597 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℝ) |
20 | 1 | peano2uzs 12747 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
21 | 20 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
22 | elfzuz 13357 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) | |
23 | 1 | uztrn2 12706 | . . . . . 6 ⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
24 | 21, 22, 23 | syl2an 597 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
25 | isumsup.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) | |
26 | 25, 3 | breqtrrd 5124 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
27 | 26 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
28 | 24, 27 | syldan 592 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹‘𝑘)) |
29 | 11, 15, 19, 28 | sermono 13860 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
30 | 7 | fveq1i 6830 | . . 3 ⊢ (𝐺‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗) |
31 | 7 | fveq1i 6830 | . . 3 ⊢ (𝐺‘(𝑗 + 1)) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)) |
32 | 29, 30, 31 | 3brtr4g 5130 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ≤ (𝐺‘(𝑗 + 1))) |
33 | isumsup.7 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) | |
34 | 1, 2, 9, 32, 33 | climsup 15480 | 1 ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 class class class wbr 5096 ran crn 5625 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 supcsup 9301 ℝcr 10975 0cc0 10976 1c1 10977 + caddc 10979 < clt 11114 ≤ cle 11115 ℤcz 12424 ℤ≥cuz 12687 ...cfz 13344 seqcseq 13826 ⇝ cli 15292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fz 13345 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 |
This theorem is referenced by: isumsup 15658 ovoliunlem1 24771 ioombl1lem4 24830 uniioombllem2 24852 uniioombllem6 24857 sge0isum 44354 |
Copyright terms: Public domain | W3C validator |