Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumsup2 Structured version   Visualization version   GIF version

Theorem isumsup2 15196
 Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
isumsup.1 𝑍 = (ℤ𝑀)
isumsup.2 𝐺 = seq𝑀( + , 𝐹)
isumsup.3 (𝜑𝑀 ∈ ℤ)
isumsup.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumsup.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
isumsup.6 ((𝜑𝑘𝑍) → 0 ≤ 𝐴)
isumsup.7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
Assertion
Ref Expression
isumsup2 (𝜑𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
Distinct variable groups:   𝑥,𝑗,𝐴   𝑗,𝑘,𝐹,𝑥   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘,𝑥   𝑗,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑘)   𝐺(𝑘)

Proof of Theorem isumsup2
StepHypRef Expression
1 isumsup.1 . 2 𝑍 = (ℤ𝑀)
2 isumsup.3 . 2 (𝜑𝑀 ∈ ℤ)
3 isumsup.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
4 isumsup.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
53, 4eqeltrd 2893 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 5serfre 13399 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
7 isumsup.2 . . . 4 𝐺 = seq𝑀( + , 𝐹)
87feq1i 6482 . . 3 (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ)
96, 8sylibr 237 . 2 (𝜑𝐺:𝑍⟶ℝ)
10 simpr 488 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
1110, 1eleqtrdi 2903 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
12 eluzelz 12245 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
13 uzid 12250 . . . . 5 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
14 peano2uz 12293 . . . . 5 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
1511, 12, 13, 144syl 19 . . . 4 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ𝑗))
16 simpl 486 . . . . 5 ((𝜑𝑗𝑍) → 𝜑)
17 elfzuz 12902 . . . . . 6 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2904 . . . . 5 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘𝑍)
1916, 18, 5syl2an 598 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝐹𝑘) ∈ ℝ)
201peano2uzs 12294 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
2120adantl 485 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
22 elfzuz 12902 . . . . . 6 (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ‘(𝑗 + 1)))
231uztrn2 12254 . . . . . 6 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
2421, 22, 23syl2an 598 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘𝑍)
25 isumsup.6 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ 𝐴)
2625, 3breqtrrd 5061 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2726adantlr 714 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → 0 ≤ (𝐹𝑘))
2824, 27syldan 594 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹𝑘))
2911, 15, 19, 28sermono 13402 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
307fveq1i 6650 . . 3 (𝐺𝑗) = (seq𝑀( + , 𝐹)‘𝑗)
317fveq1i 6650 . . 3 (𝐺‘(𝑗 + 1)) = (seq𝑀( + , 𝐹)‘(𝑗 + 1))
3229, 30, 313brtr4g 5067 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ≤ (𝐺‘(𝑗 + 1)))
33 isumsup.7 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐺𝑗) ≤ 𝑥)
341, 2, 9, 32, 33climsup 15021 1 (𝜑𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   class class class wbr 5033  ran crn 5524  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  supcsup 8892  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668   ≤ cle 10669  ℤcz 11973  ℤ≥cuz 12235  ...cfz 12889  seqcseq 13368   ⇝ cli 14836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840 This theorem is referenced by:  isumsup  15197  ovoliunlem1  24109  ioombl1lem4  24168  uniioombllem2  24190  uniioombllem6  24195  sge0isum  43053
 Copyright terms: Public domain W3C validator