| Step | Hyp | Ref
| Expression |
| 1 | | ovolun.g1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
| 2 | | elovolmlem 25509 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 3 | 1, 2 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 5 | 4 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑛 / 2) ∈ ℕ) → (𝐺‘(𝑛 / 2)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
| 6 | | nneo 12702 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) ∈ ℕ ↔
¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
| 7 | 6 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
| 8 | 7 | con2bid 354 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 2) ∈ ℕ ↔ ¬ (𝑛 / 2) ∈
ℕ)) |
| 9 | 8 | biimpar 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
((𝑛 + 1) / 2) ∈
ℕ) |
| 10 | | ovolun.f1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
| 11 | | elovolmlem 25509 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 14 | 13 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ((𝑛 + 1) / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
| 15 | 9, 14 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
(𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩
(ℝ × ℝ))) |
| 16 | 5, 15 | ifclda 4561 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
| 17 | | ovolun.h |
. . . . . 6
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) |
| 18 | 16, 17 | fmptd 7134 |
. . . . 5
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 19 | | eqid 2737 |
. . . . . 6
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
| 20 | | ovolun.u |
. . . . . 6
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
| 21 | 19, 20 | ovolsf 25507 |
. . . . 5
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞)) |
| 22 | 18, 21 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈:ℕ⟶(0[,)+∞)) |
| 23 | | rge0ssre 13496 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ |
| 24 | | fss 6752 |
. . . 4
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝑈:ℕ⟶ℝ) |
| 25 | 22, 23, 24 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝑈:ℕ⟶ℝ) |
| 26 | 25 | ffvelcdmda 7104 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ∈ ℝ) |
| 27 | | 2nn 12339 |
. . . 4
⊢ 2 ∈
ℕ |
| 28 | | peano2nn 12278 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 29 | 28 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
| 30 | 29 | nnred 12281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ) |
| 31 | 30 | rehalfcld 12513 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) / 2) ∈ ℝ) |
| 32 | 31 | flcld 13838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(⌊‘((𝑘 + 1) /
2)) ∈ ℤ) |
| 33 | | ax-1cn 11213 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 34 | 33 | 2timesi 12404 |
. . . . . . . 8
⊢ (2
· 1) = (1 + 1) |
| 35 | | nnge1 12294 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ≤
𝑘) |
| 36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘) |
| 37 | | nnre 12273 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
| 38 | 37 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ) |
| 39 | | 1re 11261 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 40 | | leadd1 11731 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ 𝑘
∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑘 ↔ (1 + 1) ≤ (𝑘 + 1))) |
| 41 | 39, 39, 40 | mp3an13 1454 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℝ → (1 ≤
𝑘 ↔ (1 + 1) ≤
(𝑘 + 1))) |
| 42 | 38, 41 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 + 1) ≤ (𝑘 + 1))) |
| 43 | 36, 42 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 + 1) ≤ (𝑘 + 1)) |
| 44 | 34, 43 | eqbrtrid 5178 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 1) ≤
(𝑘 + 1)) |
| 45 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 46 | | 2pos 12369 |
. . . . . . . . . 10
⊢ 0 <
2 |
| 47 | 45, 46 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 48 | | lemuldiv2 12149 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 ·
1) ≤ (𝑘 + 1) ↔ 1
≤ ((𝑘 + 1) /
2))) |
| 49 | 39, 47, 48 | mp3an13 1454 |
. . . . . . . 8
⊢ ((𝑘 + 1) ∈ ℝ → ((2
· 1) ≤ (𝑘 + 1)
↔ 1 ≤ ((𝑘 + 1) /
2))) |
| 50 | 30, 49 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 1) ≤
(𝑘 + 1) ↔ 1 ≤
((𝑘 + 1) /
2))) |
| 51 | 44, 50 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤ ((𝑘 + 1) / 2)) |
| 52 | | 1z 12647 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 53 | | flge 13845 |
. . . . . . 7
⊢ ((((𝑘 + 1) / 2) ∈ ℝ ∧
1 ∈ ℤ) → (1 ≤ ((𝑘 + 1) / 2) ↔ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
| 54 | 31, 52, 53 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 ≤ ((𝑘 + 1) / 2) ↔ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
| 55 | 51, 54 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤
(⌊‘((𝑘 + 1) /
2))) |
| 56 | | elnnz1 12643 |
. . . . 5
⊢
((⌊‘((𝑘
+ 1) / 2)) ∈ ℕ ↔ ((⌊‘((𝑘 + 1) / 2)) ∈ ℤ ∧ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
| 57 | 32, 55, 56 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) |
| 58 | | nnmulcl 12290 |
. . . 4
⊢ ((2
∈ ℕ ∧ (⌊‘((𝑘 + 1) / 2)) ∈ ℕ) → (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ) |
| 59 | 27, 57, 58 | sylancr 587 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ ℕ) |
| 60 | 25 | ffvelcdmda 7104 |
. . 3
⊢ ((𝜑 ∧ (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ∈
ℝ) |
| 61 | 59, 60 | syldan 591 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ∈
ℝ) |
| 62 | | ovolun.a |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
| 63 | 62 | simprd 495 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
| 64 | | ovolun.b |
. . . . . 6
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
| 65 | 64 | simprd 495 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ) |
| 66 | 63, 65 | readdcld 11290 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐴) + (vol*‘𝐵)) ∈
ℝ) |
| 67 | | ovolun.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 68 | 67 | rpred 13077 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 69 | 66, 68 | readdcld 11290 |
. . 3
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
| 70 | 69 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
| 71 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 72 | | nnuz 12921 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 73 | 71, 72 | eleqtrdi 2851 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
| 74 | | nnz 12634 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 75 | 74 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
| 76 | | flhalf 13870 |
. . . . . 6
⊢ (𝑘 ∈ ℤ → 𝑘 ≤ (2 ·
(⌊‘((𝑘 + 1) /
2)))) |
| 77 | 75, 76 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2)))) |
| 78 | | nnz 12634 |
. . . . . . 7
⊢ ((2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ → (2 · (⌊‘((𝑘 + 1) / 2))) ∈
ℤ) |
| 79 | | eluz 12892 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℤ) → ((2 · (⌊‘((𝑘 + 1) / 2))) ∈
(ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
| 80 | 74, 78, 79 | syl2an 596 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ) → ((2 · (⌊‘((𝑘 + 1) / 2))) ∈
(ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
| 81 | 71, 59, 80 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ (ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
| 82 | 77, 81 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ (ℤ≥‘𝑘)) |
| 83 | | elfznn 13593 |
. . . . 5
⊢ (𝑗 ∈ (1...(2 ·
(⌊‘((𝑘 + 1) /
2)))) → 𝑗 ∈
ℕ) |
| 84 | 19 | ovolfsf 25506 |
. . . . . . . . . 10
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 85 | 18, 84 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 86 | 85 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs ∘ −
) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
| 87 | 86 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ (0[,)+∞)) |
| 88 | | elrege0 13494 |
. . . . . . 7
⊢ ((((abs
∘ − ) ∘ 𝐻)‘𝑗) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐻)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗))) |
| 89 | 87, 88 | sylib 218 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗))) |
| 90 | 89 | simpld 494 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ ℝ) |
| 91 | 83, 90 | sylan2 593 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...(2 ·
(⌊‘((𝑘 + 1) /
2))))) → (((abs ∘ − ) ∘ 𝐻)‘𝑗) ∈ ℝ) |
| 92 | | elfzuz 13560 |
. . . . . 6
⊢ (𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2)))) → 𝑗 ∈
(ℤ≥‘(𝑘 + 1))) |
| 93 | | eluznn 12960 |
. . . . . 6
⊢ (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(𝑘 + 1))) → 𝑗 ∈ ℕ) |
| 94 | 29, 92, 93 | syl2an 596 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2))))) → 𝑗 ∈
ℕ) |
| 95 | 89 | simprd 495 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗)) |
| 96 | 94, 95 | syldan 591 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2))))) → 0 ≤
(((abs ∘ − ) ∘ 𝐻)‘𝑗)) |
| 97 | 73, 82, 91, 96 | sermono 14075 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘𝑘) ≤ (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· (⌊‘((𝑘
+ 1) / 2))))) |
| 98 | 20 | fveq1i 6907 |
. . 3
⊢ (𝑈‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘𝑘) |
| 99 | 20 | fveq1i 6907 |
. . 3
⊢ (𝑈‘(2 ·
(⌊‘((𝑘 + 1) /
2)))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘(2 · (⌊‘((𝑘 + 1) / 2)))) |
| 100 | 97, 98, 99 | 3brtr4g 5177 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2))))) |
| 101 | | eqid 2737 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
| 102 | | ovolun.s |
. . . . . . . . . 10
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 103 | 101, 102 | ovolsf 25507 |
. . . . . . . . 9
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 104 | 12, 103 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 105 | 104 | frnd 6744 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 106 | 105, 23 | sstrdi 3996 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
| 107 | 106 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ) |
| 108 | 104 | ffnd 6737 |
. . . . . 6
⊢ (𝜑 → 𝑆 Fn ℕ) |
| 109 | | fnfvelrn 7100 |
. . . . . 6
⊢ ((𝑆 Fn ℕ ∧
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) |
| 110 | 108, 57, 109 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) |
| 111 | 107, 110 | sseldd 3984 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ℝ) |
| 112 | | eqid 2737 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
| 113 | | ovolun.t |
. . . . . . . . . 10
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
| 114 | 112, 113 | ovolsf 25507 |
. . . . . . . . 9
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
| 115 | 3, 114 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
| 116 | 115 | frnd 6744 |
. . . . . . 7
⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
| 117 | 116, 23 | sstrdi 3996 |
. . . . . 6
⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
| 118 | 117 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑇 ⊆ ℝ) |
| 119 | 115 | ffnd 6737 |
. . . . . 6
⊢ (𝜑 → 𝑇 Fn ℕ) |
| 120 | | fnfvelrn 7100 |
. . . . . 6
⊢ ((𝑇 Fn ℕ ∧
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) |
| 121 | 119, 57, 120 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) |
| 122 | 118, 121 | sseldd 3984 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ℝ) |
| 123 | 68 | rehalfcld 12513 |
. . . . . 6
⊢ (𝜑 → (𝐶 / 2) ∈ ℝ) |
| 124 | 63, 123 | readdcld 11290 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) |
| 125 | 124 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) |
| 126 | 65, 123 | readdcld 11290 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) |
| 127 | 126 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) |
| 128 | | ressxr 11305 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
| 129 | 106, 128 | sstrdi 3996 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
| 130 | | supxrcl 13357 |
. . . . . . . 8
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 131 | 129, 130 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
| 132 | | 1nn 12277 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 133 | 104 | fdmd 6746 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑆 = ℕ) |
| 134 | 132, 133 | eleqtrrid 2848 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈ dom 𝑆) |
| 135 | 134 | ne0d 4342 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑆 ≠ ∅) |
| 136 | | dm0rn0 5935 |
. . . . . . . . . 10
⊢ (dom
𝑆 = ∅ ↔ ran
𝑆 =
∅) |
| 137 | 136 | necon3bii 2993 |
. . . . . . . . 9
⊢ (dom
𝑆 ≠ ∅ ↔ ran
𝑆 ≠
∅) |
| 138 | 135, 137 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑆 ≠ ∅) |
| 139 | | supxrgtmnf 13371 |
. . . . . . . 8
⊢ ((ran
𝑆 ⊆ ℝ ∧ ran
𝑆 ≠ ∅) →
-∞ < sup(ran 𝑆,
ℝ*, < )) |
| 140 | 106, 138,
139 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → -∞ < sup(ran
𝑆, ℝ*,
< )) |
| 141 | | ovolun.f3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) |
| 142 | | xrre 13211 |
. . . . . . 7
⊢
(((sup(ran 𝑆,
ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) ∧ (-∞ <
sup(ran 𝑆,
ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2)))) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
| 143 | 131, 124,
140, 141, 142 | syl22anc 839 |
. . . . . 6
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ) |
| 144 | 143 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
| 145 | | supxrub 13366 |
. . . . . 6
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 146 | 129, 110,
145 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 147 | 141 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
≤ ((vol*‘𝐴) +
(𝐶 / 2))) |
| 148 | 111, 144,
125, 146, 147 | letrd 11418 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ ((vol*‘𝐴) + (𝐶 / 2))) |
| 149 | 117, 128 | sstrdi 3996 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑇 ⊆
ℝ*) |
| 150 | | supxrcl 13357 |
. . . . . . . 8
⊢ (ran
𝑇 ⊆
ℝ* → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
| 151 | 149, 150 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
| 152 | 115 | fdmd 6746 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑇 = ℕ) |
| 153 | 132, 152 | eleqtrrid 2848 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈ dom 𝑇) |
| 154 | 153 | ne0d 4342 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑇 ≠ ∅) |
| 155 | | dm0rn0 5935 |
. . . . . . . . . 10
⊢ (dom
𝑇 = ∅ ↔ ran
𝑇 =
∅) |
| 156 | 155 | necon3bii 2993 |
. . . . . . . . 9
⊢ (dom
𝑇 ≠ ∅ ↔ ran
𝑇 ≠
∅) |
| 157 | 154, 156 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑇 ≠ ∅) |
| 158 | | supxrgtmnf 13371 |
. . . . . . . 8
⊢ ((ran
𝑇 ⊆ ℝ ∧ ran
𝑇 ≠ ∅) →
-∞ < sup(ran 𝑇,
ℝ*, < )) |
| 159 | 117, 157,
158 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → -∞ < sup(ran
𝑇, ℝ*,
< )) |
| 160 | | ovolun.g3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))) |
| 161 | | xrre 13211 |
. . . . . . 7
⊢
(((sup(ran 𝑇,
ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) ∧ (-∞ <
sup(ran 𝑇,
ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) → sup(ran 𝑇, ℝ*, < )
∈ ℝ) |
| 162 | 151, 126,
159, 160, 161 | syl22anc 839 |
. . . . . 6
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ) |
| 163 | 162 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑇, ℝ*, < )
∈ ℝ) |
| 164 | | supxrub 13366 |
. . . . . 6
⊢ ((ran
𝑇 ⊆
ℝ* ∧ (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑇, ℝ*, <
)) |
| 165 | 149, 121,
164 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑇, ℝ*, <
)) |
| 166 | 160 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑇, ℝ*, < )
≤ ((vol*‘𝐵) +
(𝐶 / 2))) |
| 167 | 122, 163,
127, 165, 166 | letrd 11418 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ ((vol*‘𝐵) + (𝐶 / 2))) |
| 168 | 111, 122,
125, 127, 148, 167 | le2addd 11882 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))) ≤ (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2)))) |
| 169 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (2 · 𝑧) = (2 ·
1)) |
| 170 | 169 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑧 = 1 → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · 1))) |
| 171 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (𝑆‘𝑧) = (𝑆‘1)) |
| 172 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (𝑇‘𝑧) = (𝑇‘1)) |
| 173 | 171, 172 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑧 = 1 → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘1) + (𝑇‘1))) |
| 174 | 170, 173 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑧 = 1 → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1)))) |
| 175 | 174 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = 1 → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1))))) |
| 176 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (2 · 𝑧) = (2 · 𝑘)) |
| 177 | 176 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑧 = 𝑘 → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · 𝑘))) |
| 178 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (𝑆‘𝑧) = (𝑆‘𝑘)) |
| 179 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (𝑇‘𝑧) = (𝑇‘𝑘)) |
| 180 | 178, 179 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑧 = 𝑘 → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘𝑘) + (𝑇‘𝑘))) |
| 181 | 177, 180 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑧 = 𝑘 → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)))) |
| 182 | 181 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = 𝑘 → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘))))) |
| 183 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (2 · 𝑧) = (2 · (𝑘 + 1))) |
| 184 | 183 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 + 1) → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · (𝑘 + 1)))) |
| 185 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (𝑆‘𝑧) = (𝑆‘(𝑘 + 1))) |
| 186 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (𝑇‘𝑧) = (𝑇‘(𝑘 + 1))) |
| 187 | 185, 186 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 + 1) → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))) |
| 188 | 184, 187 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑧 = (𝑘 + 1) → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))))) |
| 189 | 188 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = (𝑘 + 1) → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
| 190 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (2 ·
𝑧) = (2 ·
(⌊‘((𝑘 + 1) /
2)))) |
| 191 | 190 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2))))) |
| 192 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑆‘𝑧) = (𝑆‘(⌊‘((𝑘 + 1) / 2)))) |
| 193 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑇‘𝑧) = (𝑇‘(⌊‘((𝑘 + 1) / 2)))) |
| 194 | 192, 193 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
| 195 | 191, 194 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))))) |
| 196 | 195 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) /
2))))))) |
| 197 | 20 | fveq1i 6907 |
. . . . . . . 8
⊢ (𝑈‘(2 · 1)) = (seq1(
+ , ((abs ∘ − ) ∘ 𝐻))‘(2 · 1)) |
| 198 | 132 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℕ) |
| 199 | 19 | ovolfsval 25505 |
. . . . . . . . . . . 12
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘1) = ((2nd ‘(𝐻‘1)) −
(1st ‘(𝐻‘1)))) |
| 200 | 18, 132, 199 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘1) =
((2nd ‘(𝐻‘1)) − (1st
‘(𝐻‘1)))) |
| 201 | | halfnz 12696 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬ (1
/ 2) ∈ ℤ |
| 202 | | nnz 12634 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 / 2) ∈ ℕ →
(𝑛 / 2) ∈
ℤ) |
| 203 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 / 2) = (1 / 2)) |
| 204 | 203 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → ((𝑛 / 2) ∈ ℤ ↔ (1 / 2) ∈
ℤ)) |
| 205 | 202, 204 | imbitrid 244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑛 / 2) ∈ ℕ → (1 / 2) ∈
ℤ)) |
| 206 | 201, 205 | mtoi 199 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ¬ (𝑛 / 2) ∈
ℕ) |
| 207 | 206 | iffalsed 4536 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐹‘((𝑛 + 1) / 2))) |
| 208 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) |
| 209 | | df-2 12329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
| 210 | 208, 209 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑛 + 1) = 2) |
| 211 | 210 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑛 + 1) / 2) = (2 / 2)) |
| 212 | | 2div2e1 12407 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 / 2) =
1 |
| 213 | 211, 212 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ((𝑛 + 1) / 2) = 1) |
| 214 | 213 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘1)) |
| 215 | 207, 214 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐹‘1)) |
| 216 | | fvex 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘1) ∈
V |
| 217 | 215, 17, 216 | fvmpt 7016 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℕ → (𝐻‘1)
= (𝐹‘1)) |
| 218 | 132, 217 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐻‘1) = (𝐹‘1) |
| 219 | 218 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
(2nd ‘(𝐻‘1)) = (2nd ‘(𝐹‘1)) |
| 220 | 218 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
(1st ‘(𝐻‘1)) = (1st ‘(𝐹‘1)) |
| 221 | 219, 220 | oveq12i 7443 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝐻‘1)) − (1st
‘(𝐻‘1))) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1))) |
| 222 | 200, 221 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘1) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1)))) |
| 223 | 52, 222 | seq1i 14056 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 224 | | 2t1e2 12429 |
. . . . . . . . . . 11
⊢ (2
· 1) = 2 |
| 225 | 224 | fveq2i 6909 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∘ 𝐻)‘(2 · 1)) = (((abs ∘
− ) ∘ 𝐻)‘2) |
| 226 | 19 | ovolfsval 25505 |
. . . . . . . . . . . 12
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 2 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘2) = ((2nd ‘(𝐻‘2)) −
(1st ‘(𝐻‘2)))) |
| 227 | 18, 27, 226 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘2) =
((2nd ‘(𝐻‘2)) − (1st
‘(𝐻‘2)))) |
| 228 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 2 → (𝑛 / 2) = (2 / 2)) |
| 229 | 228, 212 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 2 → (𝑛 / 2) = 1) |
| 230 | 229, 132 | eqeltrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 2 → (𝑛 / 2) ∈ ℕ) |
| 231 | 230 | iftrued 4533 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 2 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐺‘(𝑛 / 2))) |
| 232 | 229 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 2 → (𝐺‘(𝑛 / 2)) = (𝐺‘1)) |
| 233 | 231, 232 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 2 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐺‘1)) |
| 234 | | fvex 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘1) ∈
V |
| 235 | 233, 17, 234 | fvmpt 7016 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℕ → (𝐻‘2)
= (𝐺‘1)) |
| 236 | 27, 235 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐻‘2) = (𝐺‘1) |
| 237 | 236 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
(2nd ‘(𝐻‘2)) = (2nd ‘(𝐺‘1)) |
| 238 | 236 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
(1st ‘(𝐻‘2)) = (1st ‘(𝐺‘1)) |
| 239 | 237, 238 | oveq12i 7443 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝐻‘2)) − (1st
‘(𝐻‘2))) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1))) |
| 240 | 227, 239 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘2) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
| 241 | 225, 240 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘(2
· 1)) = ((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
| 242 | 72, 198, 34, 223, 241 | seqp1d 14059 |
. . . . . . . 8
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘(2 · 1)) = (((2nd
‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
| 243 | 197, 242 | eqtrid 2789 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘(2 · 1)) = (((2nd
‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
| 244 | 102 | fveq1i 6907 |
. . . . . . . . 9
⊢ (𝑆‘1) = (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘1) |
| 245 | 101 | ovolfsval 25505 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 246 | 12, 132, 245 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐹)‘1) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1)))) |
| 247 | 52, 246 | seq1i 14056 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐹))‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 248 | 244, 247 | eqtrid 2789 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
| 249 | 113 | fveq1i 6907 |
. . . . . . . . 9
⊢ (𝑇‘1) = (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) |
| 250 | 112 | ovolfsval 25505 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
| 251 | 3, 132, 250 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐺)‘1) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
| 252 | 52, 251 | seq1i 14056 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
| 253 | 249, 252 | eqtrid 2789 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
| 254 | 248, 253 | oveq12d 7449 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘1) + (𝑇‘1)) = (((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
| 255 | 243, 254 | eqtr4d 2780 |
. . . . . 6
⊢ (𝜑 → (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1))) |
| 256 | | oveq1 7438 |
. . . . . . . . 9
⊢ ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 257 | 34 | oveq2i 7442 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑘) + (2 ·
1)) = ((2 · 𝑘) + (1
+ 1)) |
| 258 | | 2cnd 12344 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℂ) |
| 259 | 38 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 260 | | 1cnd 11256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ∈
ℂ) |
| 261 | 258, 259,
260 | adddid 11285 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 ·
1))) |
| 262 | | nnmulcl 12290 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ∈ ℕ) |
| 263 | 27, 262 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℕ) |
| 264 | 263 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
ℕ) |
| 265 | 264 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
ℂ) |
| 266 | 265, 260,
260 | addassd 11283 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1))) |
| 267 | 257, 261,
266 | 3eqtr4a 2803 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = (((2 · 𝑘) + 1) + 1)) |
| 268 | 267 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (𝑘 + 1))) = (𝑈‘(((2 · 𝑘) + 1) + 1))) |
| 269 | 20 | fveq1i 6907 |
. . . . . . . . . . . 12
⊢ (𝑈‘(((2 · 𝑘) + 1) + 1)) = (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) |
| 270 | 264 | peano2nnd 12283 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈
ℕ) |
| 271 | 270, 72 | eleqtrdi 2851 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈
(ℤ≥‘1)) |
| 272 | | seqp1 14057 |
. . . . . . . . . . . . . 14
⊢ (((2
· 𝑘) + 1) ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(((2
· 𝑘) + 1) + 1)) =
((seq1( + , ((abs ∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) +
1)))) |
| 273 | 271, 272 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) = ((seq1( + , ((abs ∘
− ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) +
1)))) |
| 274 | 264, 72 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
(ℤ≥‘1)) |
| 275 | | seqp1 14057 |
. . . . . . . . . . . . . . . 16
⊢ ((2
· 𝑘) ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐻))‘((2
· 𝑘) + 1)) = ((seq1(
+ , ((abs ∘ − ) ∘ 𝐻))‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
| 276 | 274, 275 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘)) + (((abs
∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
| 277 | 20 | fveq1i 6907 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈‘(2 · 𝑘)) = (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘(2 · 𝑘)) |
| 278 | 277 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘))) |
| 279 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝑛 / 2) = (((2 · 𝑘) + 1) / 2)) |
| 280 | 279 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑘) + 1) / 2)
∈ ℕ)) |
| 281 | 279 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐺‘(𝑛 / 2)) = (𝐺‘(((2 · 𝑘) + 1) / 2))) |
| 282 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝑛 + 1) = (((2 · 𝑘) + 1) + 1)) |
| 283 | 282 | fvoveq1d 7453 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘((((2 · 𝑘) + 1) + 1) / 2))) |
| 284 | 280, 281,
283 | ifbieq12d 4554 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = ((2 · 𝑘) + 1) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if((((2 · 𝑘) + 1) / 2) ∈ ℕ,
(𝐺‘(((2 ·
𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) /
2)))) |
| 285 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺‘(((2 · 𝑘) + 1) / 2)) ∈
V |
| 286 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)) ∈
V |
| 287 | 285, 286 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ if((((2
· 𝑘) + 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2))) ∈ V |
| 288 | 284, 17, 287 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((2
· 𝑘) + 1) ∈
ℕ → (𝐻‘((2
· 𝑘) + 1)) = if((((2
· 𝑘) + 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)))) |
| 289 | 270, 288 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘((2 · 𝑘) + 1)) = if((((2 · 𝑘) + 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)))) |
| 290 | | 2ne0 12370 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ≠
0 |
| 291 | 290 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ≠
0) |
| 292 | 259, 258,
291 | divcan3d 12048 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) / 2) = 𝑘) |
| 293 | 292, 71 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) / 2) ∈
ℕ) |
| 294 | | nneo 12702 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((2
· 𝑘) ∈ ℕ
→ (((2 · 𝑘) /
2) ∈ ℕ ↔ ¬ (((2 · 𝑘) + 1) / 2) ∈ ℕ)) |
| 295 | 264, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) / 2) ∈ ℕ ↔
¬ (((2 · 𝑘) + 1)
/ 2) ∈ ℕ)) |
| 296 | 293, 295 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ¬ (((2 ·
𝑘) + 1) / 2) ∈
ℕ) |
| 297 | 296 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if((((2 ·
𝑘) + 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑘) + 1) / 2)),
(𝐹‘((((2 ·
𝑘) + 1) + 1) / 2))) =
(𝐹‘((((2 ·
𝑘) + 1) + 1) /
2))) |
| 298 | 267 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) = ((((2 ·
𝑘) + 1) + 1) /
2)) |
| 299 | 29 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ) |
| 300 | | 2cn 12341 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℂ |
| 301 | | divcan3 11948 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑘 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → ((2 · (𝑘 + 1)) / 2) = (𝑘 + 1)) |
| 302 | 300, 290,
301 | mp3an23 1455 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 + 1) ∈ ℂ → ((2
· (𝑘 + 1)) / 2) =
(𝑘 + 1)) |
| 303 | 299, 302 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) = (𝑘 + 1)) |
| 304 | 298, 303 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((2 · 𝑘) + 1) + 1) / 2) = (𝑘 + 1)) |
| 305 | 304 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)) = (𝐹‘(𝑘 + 1))) |
| 306 | 289, 297,
305 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘((2 · 𝑘) + 1)) = (𝐹‘(𝑘 + 1))) |
| 307 | 306 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐻‘((2
· 𝑘) + 1))) =
(2nd ‘(𝐹‘(𝑘 + 1)))) |
| 308 | 306 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐻‘((2
· 𝑘) + 1))) =
(1st ‘(𝐹‘(𝑘 + 1)))) |
| 309 | 307, 308 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐻‘((2
· 𝑘) + 1))) −
(1st ‘(𝐻‘((2 · 𝑘) + 1)))) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
| 310 | 19 | ovolfsval 25505 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘((2 · 𝑘) + 1)) = ((2nd ‘(𝐻‘((2 · 𝑘) + 1))) − (1st
‘(𝐻‘((2
· 𝑘) +
1))))) |
| 311 | 18, 270, 310 | syl2an2r 685 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘((2 · 𝑘) + 1)) = ((2nd ‘(𝐻‘((2 · 𝑘) + 1))) − (1st
‘(𝐻‘((2
· 𝑘) +
1))))) |
| 312 | 101 | ovolfsval 25505 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝑘 + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
| 313 | 12, 28, 312 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
| 314 | 309, 311,
313 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = (((abs ∘ − ) ∘
𝐻)‘((2 · 𝑘) + 1))) |
| 315 | 278, 314 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘)) + (((abs
∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
| 316 | 276, 315 | eqtr4d 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) = ((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
| 317 | 267 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = (𝐻‘(((2 · 𝑘) + 1) + 1))) |
| 318 | 270 | peano2nnd 12283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) ∈
ℕ) |
| 319 | 267, 318 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) ∈
ℕ) |
| 320 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝑛 / 2) = ((2 · (𝑘 + 1)) / 2)) |
| 321 | 320 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → ((𝑛 / 2) ∈ ℕ ↔ ((2
· (𝑘 + 1)) / 2)
∈ ℕ)) |
| 322 | 320 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝐺‘(𝑛 / 2)) = (𝐺‘((2 · (𝑘 + 1)) / 2))) |
| 323 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝑛 + 1) = ((2 · (𝑘 + 1)) + 1)) |
| 324 | 323 | fvoveq1d 7453 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2))) |
| 325 | 321, 322,
324 | ifbieq12d 4554 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = (2 · (𝑘 + 1)) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if(((2 · (𝑘 + 1)) / 2) ∈ ℕ,
(𝐺‘((2 ·
(𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) /
2)))) |
| 326 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺‘((2 · (𝑘 + 1)) / 2)) ∈
V |
| 327 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)) ∈
V |
| 328 | 326, 327 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(((2
· (𝑘 + 1)) / 2)
∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2))) ∈ V |
| 329 | 325, 17, 328 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
· (𝑘 + 1)) ∈
ℕ → (𝐻‘(2
· (𝑘 + 1))) = if(((2
· (𝑘 + 1)) / 2)
∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)))) |
| 330 | 319, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = if(((2 · (𝑘 + 1)) / 2) ∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)))) |
| 331 | 303, 29 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) ∈
ℕ) |
| 332 | 331 | iftrued 4533 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if(((2 ·
(𝑘 + 1)) / 2) ∈
ℕ, (𝐺‘((2
· (𝑘 + 1)) / 2)),
(𝐹‘(((2 ·
(𝑘 + 1)) + 1) / 2))) =
(𝐺‘((2 ·
(𝑘 + 1)) /
2))) |
| 333 | 303 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘((2 · (𝑘 + 1)) / 2)) = (𝐺‘(𝑘 + 1))) |
| 334 | 330, 332,
333 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = (𝐺‘(𝑘 + 1))) |
| 335 | 317, 334 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(((2 · 𝑘) + 1) + 1)) = (𝐺‘(𝑘 + 1))) |
| 336 | 335 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐻‘(((2
· 𝑘) + 1) + 1))) =
(2nd ‘(𝐺‘(𝑘 + 1)))) |
| 337 | 335 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐻‘(((2
· 𝑘) + 1) + 1))) =
(1st ‘(𝐺‘(𝑘 + 1)))) |
| 338 | 336, 337 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐻‘(((2
· 𝑘) + 1) + 1)))
− (1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1)))) = ((2nd
‘(𝐺‘(𝑘 + 1))) − (1st
‘(𝐺‘(𝑘 + 1))))) |
| 339 | 19 | ovolfsval 25505 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (((2 · 𝑘) + 1) + 1) ∈ ℕ) → (((abs
∘ − ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = ((2nd ‘(𝐻‘(((2 · 𝑘) + 1) + 1))) −
(1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1))))) |
| 340 | 18, 318, 339 | syl2an2r 685 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = ((2nd ‘(𝐻‘(((2 · 𝑘) + 1) + 1))) −
(1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1))))) |
| 341 | 112 | ovolfsval 25505 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝑘 + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) = ((2nd ‘(𝐺‘(𝑘 + 1))) − (1st ‘(𝐺‘(𝑘 + 1))))) |
| 342 | 3, 28, 341 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) = ((2nd ‘(𝐺‘(𝑘 + 1))) − (1st ‘(𝐺‘(𝑘 + 1))))) |
| 343 | 338, 340,
342 | 3eqtr4d 2787 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1))) |
| 344 | 316, 343 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) + 1))) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ −
) ∘ 𝐺)‘(𝑘 + 1)))) |
| 345 | 273, 344 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) |
| 346 | 269, 345 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(((2 · 𝑘) + 1) + 1)) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) |
| 347 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (2 · 𝑘) ∈
ℕ) → (𝑈‘(2
· 𝑘)) ∈
(0[,)+∞)) |
| 348 | 22, 263, 347 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ (0[,)+∞)) |
| 349 | 23, 348 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ ℝ) |
| 350 | 349 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ ℂ) |
| 351 | 101 | ovolfsf 25506 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 352 | 12, 351 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
| 353 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ (𝑘 + 1) ∈ ℕ) →
(((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 354 | 352, 28, 353 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 355 | 23, 354 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈ ℝ) |
| 356 | 355 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈ ℂ) |
| 357 | 112 | ovolfsf 25506 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞)) |
| 358 | 3, 357 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐺):ℕ⟶(0[,)+∞)) |
| 359 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) ∧ (𝑘 + 1) ∈ ℕ) →
(((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 360 | 358, 28, 359 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
| 361 | 23, 360 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈ ℝ) |
| 362 | 361 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈ ℂ) |
| 363 | 350, 356,
362 | addassd 11283 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))) = ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 364 | 268, 346,
363 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 365 | | seqp1 14057 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐹))‘(𝑘 + 1)) = ((seq1( + , ((abs
∘ − ) ∘ 𝐹))‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
| 366 | 73, 365 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘(𝑘 + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1)))) |
| 367 | 102 | fveq1i 6907 |
. . . . . . . . . . . . 13
⊢ (𝑆‘(𝑘 + 1)) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘(𝑘 + 1)) |
| 368 | 102 | fveq1i 6907 |
. . . . . . . . . . . . . 14
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
| 369 | 368 | oveq1i 7441 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1))) |
| 370 | 366, 367,
369 | 3eqtr4g 2802 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
| 371 | | seqp1 14057 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐺))‘(𝑘 + 1)) = ((seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) |
| 372 | 73, 371 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘(𝑘 + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) + (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1)))) |
| 373 | 113 | fveq1i 6907 |
. . . . . . . . . . . . 13
⊢ (𝑇‘(𝑘 + 1)) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘(𝑘 + 1)) |
| 374 | 113 | fveq1i 6907 |
. . . . . . . . . . . . . 14
⊢ (𝑇‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) |
| 375 | 374 | oveq1i 7441 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) + (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1))) |
| 376 | 372, 373,
375 | 3eqtr4g 2802 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑘 + 1)) = ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) |
| 377 | 370, 376 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) = (((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1))))) |
| 378 | 104 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ (0[,)+∞)) |
| 379 | 23, 378 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℝ) |
| 380 | 379 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℂ) |
| 381 | 115 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ (0[,)+∞)) |
| 382 | 23, 381 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ ℝ) |
| 383 | 382 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ ℂ) |
| 384 | 380, 356,
383, 362 | add4d 11490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 385 | 377, 384 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
| 386 | 364, 385 | eqeq12d 2753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) ↔ ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))))) |
| 387 | 256, 386 | imbitrrid 246 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))))) |
| 388 | 387 | expcom 413 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝜑 → ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
| 389 | 388 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝜑 → (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘))) → (𝜑 → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
| 390 | 175, 182,
189, 196, 255, 389 | nnind 12284 |
. . . . 5
⊢
((⌊‘((𝑘
+ 1) / 2)) ∈ ℕ → (𝜑 → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))))) |
| 391 | 390 | impcom 407 |
. . . 4
⊢ ((𝜑 ∧ (⌊‘((𝑘 + 1) / 2)) ∈ ℕ)
→ (𝑈‘(2 ·
(⌊‘((𝑘 + 1) /
2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
| 392 | 57, 391 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
| 393 | 63 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐴) ∈
ℝ) |
| 394 | 393 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐴) ∈
ℂ) |
| 395 | 68 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℝ) |
| 396 | 395 | rehalfcld 12513 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 / 2) ∈ ℝ) |
| 397 | 396 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 / 2) ∈ ℂ) |
| 398 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐵) ∈
ℝ) |
| 399 | 398 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐵) ∈
ℂ) |
| 400 | 394, 397,
399, 397 | add4d 11490 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2))) = (((vol*‘𝐴) + (vol*‘𝐵)) + ((𝐶 / 2) + (𝐶 / 2)))) |
| 401 | 395 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℂ) |
| 402 | 401 | 2halvesd 12512 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶) |
| 403 | 402 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + ((𝐶 / 2) + (𝐶 / 2))) = (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
| 404 | 400, 403 | eqtr2d 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) = (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2)))) |
| 405 | 168, 392,
404 | 3brtr4d 5175 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶)) |
| 406 | 26, 61, 70, 100, 405 | letrd 11418 |
1
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |