Step | Hyp | Ref
| Expression |
1 | | ovolun.g1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
2 | | elovolmlem 24543 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
3 | 1, 2 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
5 | 4 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑛 / 2) ∈ ℕ) → (𝐺‘(𝑛 / 2)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
6 | | nneo 12334 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) ∈ ℕ ↔
¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
7 | 6 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈
ℕ)) |
8 | 7 | con2bid 354 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑛 + 1) / 2) ∈ ℕ ↔ ¬ (𝑛 / 2) ∈
ℕ)) |
9 | 8 | biimpar 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
((𝑛 + 1) / 2) ∈
ℕ) |
10 | | ovolun.f1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) |
11 | | elovolmlem 24543 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
12 | 10, 11 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
14 | 13 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ((𝑛 + 1) / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
15 | 9, 14 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) →
(𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩
(ℝ × ℝ))) |
16 | 5, 15 | ifclda 4491 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) ∈ ( ≤ ∩ (ℝ
× ℝ))) |
17 | | ovolun.h |
. . . . . 6
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) |
18 | 16, 17 | fmptd 6970 |
. . . . 5
⊢ (𝜑 → 𝐻:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
19 | | eqid 2738 |
. . . . . 6
⊢ ((abs
∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻) |
20 | | ovolun.u |
. . . . . 6
⊢ 𝑈 = seq1( + , ((abs ∘
− ) ∘ 𝐻)) |
21 | 19, 20 | ovolsf 24541 |
. . . . 5
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞)) |
22 | 18, 21 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈:ℕ⟶(0[,)+∞)) |
23 | | rge0ssre 13117 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ |
24 | | fss 6601 |
. . . 4
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝑈:ℕ⟶ℝ) |
25 | 22, 23, 24 | sylancl 585 |
. . 3
⊢ (𝜑 → 𝑈:ℕ⟶ℝ) |
26 | 25 | ffvelrnda 6943 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ∈ ℝ) |
27 | | 2nn 11976 |
. . . 4
⊢ 2 ∈
ℕ |
28 | | peano2nn 11915 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
29 | 28 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
30 | 29 | nnred 11918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ) |
31 | 30 | rehalfcld 12150 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) / 2) ∈ ℝ) |
32 | 31 | flcld 13446 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(⌊‘((𝑘 + 1) /
2)) ∈ ℤ) |
33 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
34 | 33 | 2timesi 12041 |
. . . . . . . 8
⊢ (2
· 1) = (1 + 1) |
35 | | nnge1 11931 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ≤
𝑘) |
36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘) |
37 | | nnre 11910 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
38 | 37 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ) |
39 | | 1re 10906 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
40 | | leadd1 11373 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ 𝑘
∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑘 ↔ (1 + 1) ≤ (𝑘 + 1))) |
41 | 39, 39, 40 | mp3an13 1450 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℝ → (1 ≤
𝑘 ↔ (1 + 1) ≤
(𝑘 + 1))) |
42 | 38, 41 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 + 1) ≤ (𝑘 + 1))) |
43 | 36, 42 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 + 1) ≤ (𝑘 + 1)) |
44 | 34, 43 | eqbrtrid 5105 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 1) ≤
(𝑘 + 1)) |
45 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
46 | | 2pos 12006 |
. . . . . . . . . 10
⊢ 0 <
2 |
47 | 45, 46 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ∈
ℝ ∧ 0 < 2) |
48 | | lemuldiv2 11786 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 ·
1) ≤ (𝑘 + 1) ↔ 1
≤ ((𝑘 + 1) /
2))) |
49 | 39, 47, 48 | mp3an13 1450 |
. . . . . . . 8
⊢ ((𝑘 + 1) ∈ ℝ → ((2
· 1) ≤ (𝑘 + 1)
↔ 1 ≤ ((𝑘 + 1) /
2))) |
50 | 30, 49 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 1) ≤
(𝑘 + 1) ↔ 1 ≤
((𝑘 + 1) /
2))) |
51 | 44, 50 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤ ((𝑘 + 1) / 2)) |
52 | | 1z 12280 |
. . . . . . 7
⊢ 1 ∈
ℤ |
53 | | flge 13453 |
. . . . . . 7
⊢ ((((𝑘 + 1) / 2) ∈ ℝ ∧
1 ∈ ℤ) → (1 ≤ ((𝑘 + 1) / 2) ↔ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
54 | 31, 52, 53 | sylancl 585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 ≤ ((𝑘 + 1) / 2) ↔ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
55 | 51, 54 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ≤
(⌊‘((𝑘 + 1) /
2))) |
56 | | elnnz1 12276 |
. . . . 5
⊢
((⌊‘((𝑘
+ 1) / 2)) ∈ ℕ ↔ ((⌊‘((𝑘 + 1) / 2)) ∈ ℤ ∧ 1 ≤
(⌊‘((𝑘 + 1) /
2)))) |
57 | 32, 55, 56 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) |
58 | | nnmulcl 11927 |
. . . 4
⊢ ((2
∈ ℕ ∧ (⌊‘((𝑘 + 1) / 2)) ∈ ℕ) → (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ) |
59 | 27, 57, 58 | sylancr 586 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ ℕ) |
60 | 25 | ffvelrnda 6943 |
. . 3
⊢ ((𝜑 ∧ (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ∈
ℝ) |
61 | 59, 60 | syldan 590 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ∈
ℝ) |
62 | | ovolun.a |
. . . . . 6
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
63 | 62 | simprd 495 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
64 | | ovolun.b |
. . . . . 6
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈
ℝ)) |
65 | 64 | simprd 495 |
. . . . 5
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ) |
66 | 63, 65 | readdcld 10935 |
. . . 4
⊢ (𝜑 → ((vol*‘𝐴) + (vol*‘𝐵)) ∈
ℝ) |
67 | | ovolun.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
68 | 67 | rpred 12701 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
69 | 66, 68 | readdcld 10935 |
. . 3
⊢ (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
70 | 69 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ) |
71 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
72 | | nnuz 12550 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
73 | 71, 72 | eleqtrdi 2849 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
74 | | nnz 12272 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
75 | 74 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ) |
76 | | flhalf 13478 |
. . . . . 6
⊢ (𝑘 ∈ ℤ → 𝑘 ≤ (2 ·
(⌊‘((𝑘 + 1) /
2)))) |
77 | 75, 76 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2)))) |
78 | | nnz 12272 |
. . . . . . 7
⊢ ((2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ → (2 · (⌊‘((𝑘 + 1) / 2))) ∈
ℤ) |
79 | | eluz 12525 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℤ) → ((2 · (⌊‘((𝑘 + 1) / 2))) ∈
(ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
80 | 74, 78, 79 | syl2an 595 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧ (2
· (⌊‘((𝑘
+ 1) / 2))) ∈ ℕ) → ((2 · (⌊‘((𝑘 + 1) / 2))) ∈
(ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
81 | 71, 59, 80 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ (ℤ≥‘𝑘) ↔ 𝑘 ≤ (2 · (⌊‘((𝑘 + 1) / 2))))) |
82 | 77, 81 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 ·
(⌊‘((𝑘 + 1) /
2))) ∈ (ℤ≥‘𝑘)) |
83 | | elfznn 13214 |
. . . . 5
⊢ (𝑗 ∈ (1...(2 ·
(⌊‘((𝑘 + 1) /
2)))) → 𝑗 ∈
ℕ) |
84 | 19 | ovolfsf 24540 |
. . . . . . . . . 10
⊢ (𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
85 | 18, 84 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐻):ℕ⟶(0[,)+∞)) |
86 | 85 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs ∘ −
) ∘ 𝐻):ℕ⟶(0[,)+∞)) |
87 | 86 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ (0[,)+∞)) |
88 | | elrege0 13115 |
. . . . . . 7
⊢ ((((abs
∘ − ) ∘ 𝐻)‘𝑗) ∈ (0[,)+∞) ↔ ((((abs
∘ − ) ∘ 𝐻)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗))) |
89 | 87, 88 | sylib 217 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ ℝ ∧ 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗))) |
90 | 89 | simpld 494 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘𝑗) ∈ ℝ) |
91 | 83, 90 | sylan2 592 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...(2 ·
(⌊‘((𝑘 + 1) /
2))))) → (((abs ∘ − ) ∘ 𝐻)‘𝑗) ∈ ℝ) |
92 | | elfzuz 13181 |
. . . . . 6
⊢ (𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2)))) → 𝑗 ∈
(ℤ≥‘(𝑘 + 1))) |
93 | | eluznn 12587 |
. . . . . 6
⊢ (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(𝑘 + 1))) → 𝑗 ∈ ℕ) |
94 | 29, 92, 93 | syl2an 595 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2))))) → 𝑗 ∈
ℕ) |
95 | 89 | simprd 495 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝐻)‘𝑗)) |
96 | 94, 95 | syldan 590 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((𝑘 + 1)...(2 · (⌊‘((𝑘 + 1) / 2))))) → 0 ≤
(((abs ∘ − ) ∘ 𝐻)‘𝑗)) |
97 | 73, 82, 91, 96 | sermono 13683 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘𝑘) ≤ (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· (⌊‘((𝑘
+ 1) / 2))))) |
98 | 20 | fveq1i 6757 |
. . 3
⊢ (𝑈‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘𝑘) |
99 | 20 | fveq1i 6757 |
. . 3
⊢ (𝑈‘(2 ·
(⌊‘((𝑘 + 1) /
2)))) = (seq1( + , ((abs ∘ − ) ∘ 𝐻))‘(2 · (⌊‘((𝑘 + 1) / 2)))) |
100 | 97, 98, 99 | 3brtr4g 5104 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2))))) |
101 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
102 | | ovolun.s |
. . . . . . . . . 10
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
103 | 101, 102 | ovolsf 24541 |
. . . . . . . . 9
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
104 | 12, 103 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
105 | 104 | frnd 6592 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
106 | 105, 23 | sstrdi 3929 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ ℝ) |
107 | 106 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑆 ⊆ ℝ) |
108 | 104 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝑆 Fn ℕ) |
109 | | fnfvelrn 6940 |
. . . . . 6
⊢ ((𝑆 Fn ℕ ∧
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) |
110 | 108, 57, 109 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) |
111 | 107, 110 | sseldd 3918 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ℝ) |
112 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((abs
∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) |
113 | | ovolun.t |
. . . . . . . . . 10
⊢ 𝑇 = seq1( + , ((abs ∘
− ) ∘ 𝐺)) |
114 | 112, 113 | ovolsf 24541 |
. . . . . . . . 9
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
115 | 3, 114 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
116 | 115 | frnd 6592 |
. . . . . . 7
⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
117 | 116, 23 | sstrdi 3929 |
. . . . . 6
⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
118 | 117 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran 𝑇 ⊆ ℝ) |
119 | 115 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝑇 Fn ℕ) |
120 | | fnfvelrn 6940 |
. . . . . 6
⊢ ((𝑇 Fn ℕ ∧
(⌊‘((𝑘 + 1) /
2)) ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) |
121 | 119, 57, 120 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) |
122 | 118, 121 | sseldd 3918 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ℝ) |
123 | 68 | rehalfcld 12150 |
. . . . . 6
⊢ (𝜑 → (𝐶 / 2) ∈ ℝ) |
124 | 63, 123 | readdcld 10935 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) |
125 | 124 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) |
126 | 65, 123 | readdcld 10935 |
. . . . 5
⊢ (𝜑 → ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) |
127 | 126 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) |
128 | | ressxr 10950 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
129 | 106, 128 | sstrdi 3929 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
130 | | supxrcl 12978 |
. . . . . . . 8
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
131 | 129, 130 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
132 | | 1nn 11914 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
133 | 104 | fdmd 6595 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑆 = ℕ) |
134 | 132, 133 | eleqtrrid 2846 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈ dom 𝑆) |
135 | 134 | ne0d 4266 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑆 ≠ ∅) |
136 | | dm0rn0 5823 |
. . . . . . . . . 10
⊢ (dom
𝑆 = ∅ ↔ ran
𝑆 =
∅) |
137 | 136 | necon3bii 2995 |
. . . . . . . . 9
⊢ (dom
𝑆 ≠ ∅ ↔ ran
𝑆 ≠
∅) |
138 | 135, 137 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑆 ≠ ∅) |
139 | | supxrgtmnf 12992 |
. . . . . . . 8
⊢ ((ran
𝑆 ⊆ ℝ ∧ ran
𝑆 ≠ ∅) →
-∞ < sup(ran 𝑆,
ℝ*, < )) |
140 | 106, 138,
139 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → -∞ < sup(ran
𝑆, ℝ*,
< )) |
141 | | ovolun.f3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2))) |
142 | | xrre 12832 |
. . . . . . 7
⊢
(((sup(ran 𝑆,
ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐴) + (𝐶 / 2)) ∈ ℝ) ∧ (-∞ <
sup(ran 𝑆,
ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 / 2)))) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
143 | 131, 124,
140, 141, 142 | syl22anc 835 |
. . . . . 6
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ) |
144 | 143 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
∈ ℝ) |
145 | | supxrub 12987 |
. . . . . 6
⊢ ((ran
𝑆 ⊆
ℝ* ∧ (𝑆‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑆) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑆, ℝ*, <
)) |
146 | 129, 110,
145 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑆, ℝ*, <
)) |
147 | 141 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑆, ℝ*, < )
≤ ((vol*‘𝐴) +
(𝐶 / 2))) |
148 | 111, 144,
125, 146, 147 | letrd 11062 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(⌊‘((𝑘 + 1) / 2))) ≤ ((vol*‘𝐴) + (𝐶 / 2))) |
149 | 117, 128 | sstrdi 3929 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑇 ⊆
ℝ*) |
150 | | supxrcl 12978 |
. . . . . . . 8
⊢ (ran
𝑇 ⊆
ℝ* → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
151 | 149, 150 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ*) |
152 | 115 | fdmd 6595 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑇 = ℕ) |
153 | 132, 152 | eleqtrrid 2846 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈ dom 𝑇) |
154 | 153 | ne0d 4266 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑇 ≠ ∅) |
155 | | dm0rn0 5823 |
. . . . . . . . . 10
⊢ (dom
𝑇 = ∅ ↔ ran
𝑇 =
∅) |
156 | 155 | necon3bii 2995 |
. . . . . . . . 9
⊢ (dom
𝑇 ≠ ∅ ↔ ran
𝑇 ≠
∅) |
157 | 154, 156 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑇 ≠ ∅) |
158 | | supxrgtmnf 12992 |
. . . . . . . 8
⊢ ((ran
𝑇 ⊆ ℝ ∧ ran
𝑇 ≠ ∅) →
-∞ < sup(ran 𝑇,
ℝ*, < )) |
159 | 117, 157,
158 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → -∞ < sup(ran
𝑇, ℝ*,
< )) |
160 | | ovolun.g3 |
. . . . . . 7
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2))) |
161 | | xrre 12832 |
. . . . . . 7
⊢
(((sup(ran 𝑇,
ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐵) + (𝐶 / 2)) ∈ ℝ) ∧ (-∞ <
sup(ran 𝑇,
ℝ*, < ) ∧ sup(ran 𝑇, ℝ*, < ) ≤
((vol*‘𝐵) + (𝐶 / 2)))) → sup(ran 𝑇, ℝ*, < )
∈ ℝ) |
162 | 151, 126,
159, 160, 161 | syl22anc 835 |
. . . . . 6
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ) |
163 | 162 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑇, ℝ*, < )
∈ ℝ) |
164 | | supxrub 12987 |
. . . . . 6
⊢ ((ran
𝑇 ⊆
ℝ* ∧ (𝑇‘(⌊‘((𝑘 + 1) / 2))) ∈ ran 𝑇) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑇, ℝ*, <
)) |
165 | 149, 121,
164 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ sup(ran 𝑇, ℝ*, <
)) |
166 | 160 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → sup(ran 𝑇, ℝ*, < )
≤ ((vol*‘𝐵) +
(𝐶 / 2))) |
167 | 122, 163,
127, 165, 166 | letrd 11062 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(⌊‘((𝑘 + 1) / 2))) ≤ ((vol*‘𝐵) + (𝐶 / 2))) |
168 | 111, 122,
125, 127, 148, 167 | le2addd 11524 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))) ≤ (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2)))) |
169 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (2 · 𝑧) = (2 ·
1)) |
170 | 169 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 1 → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · 1))) |
171 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (𝑆‘𝑧) = (𝑆‘1)) |
172 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 1 → (𝑇‘𝑧) = (𝑇‘1)) |
173 | 171, 172 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑧 = 1 → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘1) + (𝑇‘1))) |
174 | 170, 173 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = 1 → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1)))) |
175 | 174 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = 1 → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1))))) |
176 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (2 · 𝑧) = (2 · 𝑘)) |
177 | 176 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 𝑘 → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · 𝑘))) |
178 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (𝑆‘𝑧) = (𝑆‘𝑘)) |
179 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 𝑘 → (𝑇‘𝑧) = (𝑇‘𝑘)) |
180 | 178, 179 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑧 = 𝑘 → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘𝑘) + (𝑇‘𝑘))) |
181 | 177, 180 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = 𝑘 → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)))) |
182 | 181 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = 𝑘 → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘))))) |
183 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (2 · 𝑧) = (2 · (𝑘 + 1))) |
184 | 183 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 + 1) → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · (𝑘 + 1)))) |
185 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (𝑆‘𝑧) = (𝑆‘(𝑘 + 1))) |
186 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = (𝑘 + 1) → (𝑇‘𝑧) = (𝑇‘(𝑘 + 1))) |
187 | 185, 186 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑧 = (𝑘 + 1) → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))) |
188 | 184, 187 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = (𝑘 + 1) → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))))) |
189 | 188 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = (𝑘 + 1) → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
190 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (2 ·
𝑧) = (2 ·
(⌊‘((𝑘 + 1) /
2)))) |
191 | 190 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑈‘(2 · 𝑧)) = (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2))))) |
192 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑆‘𝑧) = (𝑆‘(⌊‘((𝑘 + 1) / 2)))) |
193 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → (𝑇‘𝑧) = (𝑇‘(⌊‘((𝑘 + 1) / 2)))) |
194 | 192, 193 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝑆‘𝑧) + (𝑇‘𝑧)) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
195 | 191, 194 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧)) ↔ (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))))) |
196 | 195 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = (⌊‘((𝑘 + 1) / 2)) → ((𝜑 → (𝑈‘(2 · 𝑧)) = ((𝑆‘𝑧) + (𝑇‘𝑧))) ↔ (𝜑 → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) /
2))))))) |
197 | 20 | fveq1i 6757 |
. . . . . . . 8
⊢ (𝑈‘(2 · 1)) = (seq1(
+ , ((abs ∘ − ) ∘ 𝐻))‘(2 · 1)) |
198 | 132 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℕ) |
199 | 19 | ovolfsval 24539 |
. . . . . . . . . . . 12
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘1) = ((2nd ‘(𝐻‘1)) −
(1st ‘(𝐻‘1)))) |
200 | 18, 132, 199 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘1) =
((2nd ‘(𝐻‘1)) − (1st
‘(𝐻‘1)))) |
201 | | halfnz 12328 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬ (1
/ 2) ∈ ℤ |
202 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 / 2) ∈ ℕ →
(𝑛 / 2) ∈
ℤ) |
203 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 / 2) = (1 / 2)) |
204 | 203 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → ((𝑛 / 2) ∈ ℤ ↔ (1 / 2) ∈
ℤ)) |
205 | 202, 204 | syl5ib 243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑛 / 2) ∈ ℕ → (1 / 2) ∈
ℤ)) |
206 | 201, 205 | mtoi 198 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ¬ (𝑛 / 2) ∈
ℕ) |
207 | 206 | iffalsed 4467 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐹‘((𝑛 + 1) / 2))) |
208 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) |
209 | | df-2 11966 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
210 | 208, 209 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑛 + 1) = 2) |
211 | 210 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝑛 + 1) / 2) = (2 / 2)) |
212 | | 2div2e1 12044 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 / 2) =
1 |
213 | 211, 212 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ((𝑛 + 1) / 2) = 1) |
214 | 213 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘1)) |
215 | 207, 214 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐹‘1)) |
216 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘1) ∈
V |
217 | 215, 17, 216 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℕ → (𝐻‘1)
= (𝐹‘1)) |
218 | 132, 217 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐻‘1) = (𝐹‘1) |
219 | 218 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(2nd ‘(𝐻‘1)) = (2nd ‘(𝐹‘1)) |
220 | 218 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(1st ‘(𝐻‘1)) = (1st ‘(𝐹‘1)) |
221 | 219, 220 | oveq12i 7267 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝐻‘1)) − (1st
‘(𝐻‘1))) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1))) |
222 | 200, 221 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘1) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1)))) |
223 | 52, 222 | seq1i 13663 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
224 | | 2t1e2 12066 |
. . . . . . . . . . 11
⊢ (2
· 1) = 2 |
225 | 224 | fveq2i 6759 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∘ 𝐻)‘(2 · 1)) = (((abs ∘
− ) ∘ 𝐻)‘2) |
226 | 19 | ovolfsval 24539 |
. . . . . . . . . . . 12
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 2 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘2) = ((2nd ‘(𝐻‘2)) −
(1st ‘(𝐻‘2)))) |
227 | 18, 27, 226 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘2) =
((2nd ‘(𝐻‘2)) − (1st
‘(𝐻‘2)))) |
228 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 2 → (𝑛 / 2) = (2 / 2)) |
229 | 228, 212 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 2 → (𝑛 / 2) = 1) |
230 | 229, 132 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 2 → (𝑛 / 2) ∈ ℕ) |
231 | 230 | iftrued 4464 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 2 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐺‘(𝑛 / 2))) |
232 | 229 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 2 → (𝐺‘(𝑛 / 2)) = (𝐺‘1)) |
233 | 231, 232 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 2 → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = (𝐺‘1)) |
234 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘1) ∈
V |
235 | 233, 17, 234 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℕ → (𝐻‘2)
= (𝐺‘1)) |
236 | 27, 235 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐻‘2) = (𝐺‘1) |
237 | 236 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(2nd ‘(𝐻‘2)) = (2nd ‘(𝐺‘1)) |
238 | 236 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢
(1st ‘(𝐻‘2)) = (1st ‘(𝐺‘1)) |
239 | 237, 238 | oveq12i 7267 |
. . . . . . . . . . 11
⊢
((2nd ‘(𝐻‘2)) − (1st
‘(𝐻‘2))) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1))) |
240 | 227, 239 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘2) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
241 | 225, 240 | syl5eq 2791 |
. . . . . . . . 9
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐻)‘(2
· 1)) = ((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
242 | 72, 198, 34, 223, 241 | seqp1d 13666 |
. . . . . . . 8
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘(2 · 1)) = (((2nd
‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
243 | 197, 242 | syl5eq 2791 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘(2 · 1)) = (((2nd
‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
244 | 102 | fveq1i 6757 |
. . . . . . . . 9
⊢ (𝑆‘1) = (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘1) |
245 | 101 | ovolfsval 24539 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
246 | 12, 132, 245 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐹)‘1) =
((2nd ‘(𝐹‘1)) − (1st
‘(𝐹‘1)))) |
247 | 52, 246 | seq1i 13663 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐹))‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
248 | 244, 247 | syl5eq 2791 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘1) = ((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1)))) |
249 | 113 | fveq1i 6757 |
. . . . . . . . 9
⊢ (𝑇‘1) = (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘1) |
250 | 112 | ovolfsval 24539 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 1 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
251 | 3, 132, 250 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs ∘ − )
∘ 𝐺)‘1) =
((2nd ‘(𝐺‘1)) − (1st
‘(𝐺‘1)))) |
252 | 52, 251 | seq1i 13663 |
. . . . . . . . 9
⊢ (𝜑 → (seq1( + , ((abs ∘
− ) ∘ 𝐺))‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
253 | 249, 252 | syl5eq 2791 |
. . . . . . . 8
⊢ (𝜑 → (𝑇‘1) = ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1)))) |
254 | 248, 253 | oveq12d 7273 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘1) + (𝑇‘1)) = (((2nd ‘(𝐹‘1)) −
(1st ‘(𝐹‘1))) + ((2nd ‘(𝐺‘1)) −
(1st ‘(𝐺‘1))))) |
255 | 243, 254 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (𝑈‘(2 · 1)) = ((𝑆‘1) + (𝑇‘1))) |
256 | | oveq1 7262 |
. . . . . . . . 9
⊢ ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
257 | 34 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑘) + (2 ·
1)) = ((2 · 𝑘) + (1
+ 1)) |
258 | | 2cnd 11981 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ∈
ℂ) |
259 | 38 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
260 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 1 ∈
ℂ) |
261 | 258, 259,
260 | adddid 10930 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 ·
1))) |
262 | | nnmulcl 11927 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ∈ ℕ) |
263 | 27, 262 | mpan 686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℕ) |
264 | 263 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
ℕ) |
265 | 264 | nncnd 11919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
ℂ) |
266 | 265, 260,
260 | addassd 10928 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1))) |
267 | 257, 261,
266 | 3eqtr4a 2805 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = (((2 · 𝑘) + 1) + 1)) |
268 | 267 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (𝑘 + 1))) = (𝑈‘(((2 · 𝑘) + 1) + 1))) |
269 | 20 | fveq1i 6757 |
. . . . . . . . . . . 12
⊢ (𝑈‘(((2 · 𝑘) + 1) + 1)) = (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) |
270 | 264 | peano2nnd 11920 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈
ℕ) |
271 | 270, 72 | eleqtrdi 2849 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈
(ℤ≥‘1)) |
272 | | seqp1 13664 |
. . . . . . . . . . . . . 14
⊢ (((2
· 𝑘) + 1) ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(((2
· 𝑘) + 1) + 1)) =
((seq1( + , ((abs ∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) +
1)))) |
273 | 271, 272 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) = ((seq1( + , ((abs ∘
− ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) +
1)))) |
274 | 264, 72 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈
(ℤ≥‘1)) |
275 | | seqp1 13664 |
. . . . . . . . . . . . . . . 16
⊢ ((2
· 𝑘) ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐻))‘((2
· 𝑘) + 1)) = ((seq1(
+ , ((abs ∘ − ) ∘ 𝐻))‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
276 | 274, 275 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘)) + (((abs
∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
277 | 20 | fveq1i 6757 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈‘(2 · 𝑘)) = (seq1( + , ((abs ∘
− ) ∘ 𝐻))‘(2 · 𝑘)) |
278 | 277 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) = (seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘))) |
279 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝑛 / 2) = (((2 · 𝑘) + 1) / 2)) |
280 | 279 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑘) + 1) / 2)
∈ ℕ)) |
281 | 279 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐺‘(𝑛 / 2)) = (𝐺‘(((2 · 𝑘) + 1) / 2))) |
282 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝑛 + 1) = (((2 · 𝑘) + 1) + 1)) |
283 | 282 | fvoveq1d 7277 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((2 · 𝑘) + 1) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘((((2 · 𝑘) + 1) + 1) / 2))) |
284 | 280, 281,
283 | ifbieq12d 4484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = ((2 · 𝑘) + 1) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if((((2 · 𝑘) + 1) / 2) ∈ ℕ,
(𝐺‘(((2 ·
𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) /
2)))) |
285 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺‘(((2 · 𝑘) + 1) / 2)) ∈
V |
286 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)) ∈
V |
287 | 285, 286 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ if((((2
· 𝑘) + 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2))) ∈ V |
288 | 284, 17, 287 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((2
· 𝑘) + 1) ∈
ℕ → (𝐻‘((2
· 𝑘) + 1)) = if((((2
· 𝑘) + 1) / 2)
∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)))) |
289 | 270, 288 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘((2 · 𝑘) + 1)) = if((((2 · 𝑘) + 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑘) + 1) / 2)), (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)))) |
290 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ≠
0 |
291 | 290 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 2 ≠
0) |
292 | 259, 258,
291 | divcan3d 11686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) / 2) = 𝑘) |
293 | 292, 71 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) / 2) ∈
ℕ) |
294 | | nneo 12334 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((2
· 𝑘) ∈ ℕ
→ (((2 · 𝑘) /
2) ∈ ℕ ↔ ¬ (((2 · 𝑘) + 1) / 2) ∈ ℕ)) |
295 | 264, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) / 2) ∈ ℕ ↔
¬ (((2 · 𝑘) + 1)
/ 2) ∈ ℕ)) |
296 | 293, 295 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ¬ (((2 ·
𝑘) + 1) / 2) ∈
ℕ) |
297 | 296 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if((((2 ·
𝑘) + 1) / 2) ∈
ℕ, (𝐺‘(((2
· 𝑘) + 1) / 2)),
(𝐹‘((((2 ·
𝑘) + 1) + 1) / 2))) =
(𝐹‘((((2 ·
𝑘) + 1) + 1) /
2))) |
298 | 267 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) = ((((2 ·
𝑘) + 1) + 1) /
2)) |
299 | 29 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ) |
300 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℂ |
301 | | divcan3 11589 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑘 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → ((2 · (𝑘 + 1)) / 2) = (𝑘 + 1)) |
302 | 300, 290,
301 | mp3an23 1451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 + 1) ∈ ℂ → ((2
· (𝑘 + 1)) / 2) =
(𝑘 + 1)) |
303 | 299, 302 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) = (𝑘 + 1)) |
304 | 298, 303 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((2 · 𝑘) + 1) + 1) / 2) = (𝑘 + 1)) |
305 | 304 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘((((2 · 𝑘) + 1) + 1) / 2)) = (𝐹‘(𝑘 + 1))) |
306 | 289, 297,
305 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘((2 · 𝑘) + 1)) = (𝐹‘(𝑘 + 1))) |
307 | 306 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐻‘((2
· 𝑘) + 1))) =
(2nd ‘(𝐹‘(𝑘 + 1)))) |
308 | 306 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐻‘((2
· 𝑘) + 1))) =
(1st ‘(𝐹‘(𝑘 + 1)))) |
309 | 307, 308 | oveq12d 7273 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐻‘((2
· 𝑘) + 1))) −
(1st ‘(𝐻‘((2 · 𝑘) + 1)))) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
310 | 19 | ovolfsval 24539 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ((2 · 𝑘) + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘((2 · 𝑘) + 1)) = ((2nd ‘(𝐻‘((2 · 𝑘) + 1))) − (1st
‘(𝐻‘((2
· 𝑘) +
1))))) |
311 | 18, 270, 310 | syl2an2r 681 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘((2 · 𝑘) + 1)) = ((2nd ‘(𝐻‘((2 · 𝑘) + 1))) − (1st
‘(𝐻‘((2
· 𝑘) +
1))))) |
312 | 101 | ovolfsval 24539 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝑘 + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
313 | 12, 28, 312 | syl2an 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = ((2nd ‘(𝐹‘(𝑘 + 1))) − (1st ‘(𝐹‘(𝑘 + 1))))) |
314 | 309, 311,
313 | 3eqtr4rd 2789 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) = (((abs ∘ − ) ∘
𝐻)‘((2 · 𝑘) + 1))) |
315 | 278, 314 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐻))‘(2
· 𝑘)) + (((abs
∘ − ) ∘ 𝐻)‘((2 · 𝑘) + 1)))) |
316 | 276, 315 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) = ((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
317 | 267 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = (𝐻‘(((2 · 𝑘) + 1) + 1))) |
318 | 270 | peano2nnd 11920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) ∈
ℕ) |
319 | 267, 318 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) ∈
ℕ) |
320 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝑛 / 2) = ((2 · (𝑘 + 1)) / 2)) |
321 | 320 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → ((𝑛 / 2) ∈ ℕ ↔ ((2
· (𝑘 + 1)) / 2)
∈ ℕ)) |
322 | 320 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝐺‘(𝑛 / 2)) = (𝐺‘((2 · (𝑘 + 1)) / 2))) |
323 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝑛 + 1) = ((2 · (𝑘 + 1)) + 1)) |
324 | 323 | fvoveq1d 7277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (2 · (𝑘 + 1)) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2))) |
325 | 321, 322,
324 | ifbieq12d 4484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = (2 · (𝑘 + 1)) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if(((2 · (𝑘 + 1)) / 2) ∈ ℕ,
(𝐺‘((2 ·
(𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) /
2)))) |
326 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺‘((2 · (𝑘 + 1)) / 2)) ∈
V |
327 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)) ∈
V |
328 | 326, 327 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(((2
· (𝑘 + 1)) / 2)
∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2))) ∈ V |
329 | 325, 17, 328 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
· (𝑘 + 1)) ∈
ℕ → (𝐻‘(2
· (𝑘 + 1))) = if(((2
· (𝑘 + 1)) / 2)
∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)))) |
330 | 319, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = if(((2 · (𝑘 + 1)) / 2) ∈ ℕ, (𝐺‘((2 · (𝑘 + 1)) / 2)), (𝐹‘(((2 · (𝑘 + 1)) + 1) / 2)))) |
331 | 303, 29 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · (𝑘 + 1)) / 2) ∈
ℕ) |
332 | 331 | iftrued 4464 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if(((2 ·
(𝑘 + 1)) / 2) ∈
ℕ, (𝐺‘((2
· (𝑘 + 1)) / 2)),
(𝐹‘(((2 ·
(𝑘 + 1)) + 1) / 2))) =
(𝐺‘((2 ·
(𝑘 + 1)) /
2))) |
333 | 303 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘((2 · (𝑘 + 1)) / 2)) = (𝐺‘(𝑘 + 1))) |
334 | 330, 332,
333 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(2 · (𝑘 + 1))) = (𝐺‘(𝑘 + 1))) |
335 | 317, 334 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘(((2 · 𝑘) + 1) + 1)) = (𝐺‘(𝑘 + 1))) |
336 | 335 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (2nd
‘(𝐻‘(((2
· 𝑘) + 1) + 1))) =
(2nd ‘(𝐺‘(𝑘 + 1)))) |
337 | 335 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐻‘(((2
· 𝑘) + 1) + 1))) =
(1st ‘(𝐺‘(𝑘 + 1)))) |
338 | 336, 337 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2nd
‘(𝐻‘(((2
· 𝑘) + 1) + 1)))
− (1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1)))) = ((2nd
‘(𝐺‘(𝑘 + 1))) − (1st
‘(𝐺‘(𝑘 + 1))))) |
339 | 19 | ovolfsval 24539 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (((2 · 𝑘) + 1) + 1) ∈ ℕ) → (((abs
∘ − ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = ((2nd ‘(𝐻‘(((2 · 𝑘) + 1) + 1))) −
(1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1))))) |
340 | 18, 318, 339 | syl2an2r 681 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = ((2nd ‘(𝐻‘(((2 · 𝑘) + 1) + 1))) −
(1st ‘(𝐻‘(((2 · 𝑘) + 1) + 1))))) |
341 | 112 | ovolfsval 24539 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝑘 + 1) ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) = ((2nd ‘(𝐺‘(𝑘 + 1))) − (1st ‘(𝐺‘(𝑘 + 1))))) |
342 | 3, 28, 341 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) = ((2nd ‘(𝐺‘(𝑘 + 1))) − (1st ‘(𝐺‘(𝑘 + 1))))) |
343 | 338, 340,
342 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐻)‘(((2 · 𝑘) + 1) + 1)) = (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1))) |
344 | 316, 343 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , ((abs
∘ − ) ∘ 𝐻))‘((2 · 𝑘) + 1)) + (((abs ∘ − ) ∘
𝐻)‘(((2 ·
𝑘) + 1) + 1))) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ −
) ∘ 𝐺)‘(𝑘 + 1)))) |
345 | 273, 344 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐻))‘(((2 · 𝑘) + 1) + 1)) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) |
346 | 269, 345 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(((2 · 𝑘) + 1) + 1)) = (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) |
347 | | ffvelrn 6941 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈:ℕ⟶(0[,)+∞)
∧ (2 · 𝑘) ∈
ℕ) → (𝑈‘(2
· 𝑘)) ∈
(0[,)+∞)) |
348 | 22, 263, 347 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ (0[,)+∞)) |
349 | 23, 348 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ ℝ) |
350 | 349 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · 𝑘)) ∈ ℂ) |
351 | 101 | ovolfsf 24540 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞)) |
352 | 12, 351 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐹):ℕ⟶(0[,)+∞)) |
353 | | ffvelrn 6941 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
∘ − ) ∘ 𝐹):ℕ⟶(0[,)+∞) ∧ (𝑘 + 1) ∈ ℕ) →
(((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
354 | 352, 28, 353 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
355 | 23, 354 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈ ℝ) |
356 | 355 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐹)‘(𝑘 + 1)) ∈ ℂ) |
357 | 112 | ovolfsf 24540 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ((abs ∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞)) |
358 | 3, 357 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs ∘ − )
∘ 𝐺):ℕ⟶(0[,)+∞)) |
359 | | ffvelrn 6941 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
∘ − ) ∘ 𝐺):ℕ⟶(0[,)+∞) ∧ (𝑘 + 1) ∈ ℕ) →
(((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
360 | 358, 28, 359 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈
(0[,)+∞)) |
361 | 23, 360 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈ ℝ) |
362 | 361 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((abs ∘
− ) ∘ 𝐺)‘(𝑘 + 1)) ∈ ℂ) |
363 | 350, 356,
362 | addassd 10928 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝑈‘(2 · 𝑘)) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))) = ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
364 | 268, 346,
363 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
365 | | seqp1 13664 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐹))‘(𝑘 + 1)) = ((seq1( + , ((abs
∘ − ) ∘ 𝐹))‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
366 | 73, 365 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐹))‘(𝑘 + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1)))) |
367 | 102 | fveq1i 6757 |
. . . . . . . . . . . . 13
⊢ (𝑆‘(𝑘 + 1)) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘(𝑘 + 1)) |
368 | 102 | fveq1i 6757 |
. . . . . . . . . . . . . 14
⊢ (𝑆‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) |
369 | 368 | oveq1i 7265 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐹))‘𝑘) + (((abs ∘ − )
∘ 𝐹)‘(𝑘 + 1))) |
370 | 366, 367,
369 | 3eqtr4g 2804 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘(𝑘 + 1)) = ((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)))) |
371 | | seqp1 13664 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘1) → (seq1( + , ((abs ∘ − )
∘ 𝐺))‘(𝑘 + 1)) = ((seq1( + , ((abs
∘ − ) ∘ 𝐺))‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) |
372 | 73, 371 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝐺))‘(𝑘 + 1)) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) + (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1)))) |
373 | 113 | fveq1i 6757 |
. . . . . . . . . . . . 13
⊢ (𝑇‘(𝑘 + 1)) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘(𝑘 + 1)) |
374 | 113 | fveq1i 6757 |
. . . . . . . . . . . . . 14
⊢ (𝑇‘𝑘) = (seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) |
375 | 374 | oveq1i 7265 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1))) = ((seq1( + , ((abs ∘ − )
∘ 𝐺))‘𝑘) + (((abs ∘ − )
∘ 𝐺)‘(𝑘 + 1))) |
376 | 372, 373,
375 | 3eqtr4g 2804 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑘 + 1)) = ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) |
377 | 370, 376 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) = (((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1))))) |
378 | 104 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ (0[,)+∞)) |
379 | 23, 378 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℝ) |
380 | 379 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑆‘𝑘) ∈ ℂ) |
381 | 115 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ (0[,)+∞)) |
382 | 23, 381 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ ℝ) |
383 | 382 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇‘𝑘) ∈ ℂ) |
384 | 380, 356,
383, 362 | add4d 11133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝑆‘𝑘) + (((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1))) + ((𝑇‘𝑘) + (((abs ∘ − ) ∘ 𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
385 | 377, 384 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1))))) |
386 | 364, 385 | eqeq12d 2754 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))) ↔ ((𝑈‘(2 · 𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))) = (((𝑆‘𝑘) + (𝑇‘𝑘)) + ((((abs ∘ − ) ∘ 𝐹)‘(𝑘 + 1)) + (((abs ∘ − ) ∘
𝐺)‘(𝑘 + 1)))))) |
387 | 256, 386 | syl5ibr 245 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1))))) |
388 | 387 | expcom 413 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝜑 → ((𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘)) → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
389 | 388 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝜑 → (𝑈‘(2 · 𝑘)) = ((𝑆‘𝑘) + (𝑇‘𝑘))) → (𝜑 → (𝑈‘(2 · (𝑘 + 1))) = ((𝑆‘(𝑘 + 1)) + (𝑇‘(𝑘 + 1)))))) |
390 | 175, 182,
189, 196, 255, 389 | nnind 11921 |
. . . . 5
⊢
((⌊‘((𝑘
+ 1) / 2)) ∈ ℕ → (𝜑 → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2)))))) |
391 | 390 | impcom 407 |
. . . 4
⊢ ((𝜑 ∧ (⌊‘((𝑘 + 1) / 2)) ∈ ℕ)
→ (𝑈‘(2 ·
(⌊‘((𝑘 + 1) /
2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
392 | 57, 391 | syldan 590 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) = ((𝑆‘(⌊‘((𝑘 + 1) / 2))) + (𝑇‘(⌊‘((𝑘 + 1) / 2))))) |
393 | 63 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐴) ∈
ℝ) |
394 | 393 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐴) ∈
ℂ) |
395 | 68 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℝ) |
396 | 395 | rehalfcld 12150 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 / 2) ∈ ℝ) |
397 | 396 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐶 / 2) ∈ ℂ) |
398 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐵) ∈
ℝ) |
399 | 398 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol*‘𝐵) ∈
ℂ) |
400 | 394, 397,
399, 397 | add4d 11133 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2))) = (((vol*‘𝐴) + (vol*‘𝐵)) + ((𝐶 / 2) + (𝐶 / 2)))) |
401 | 395 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℂ) |
402 | 401 | 2halvesd 12149 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶) |
403 | 402 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + ((𝐶 / 2) + (𝐶 / 2))) = (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |
404 | 400, 403 | eqtr2d 2779 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) = (((vol*‘𝐴) + (𝐶 / 2)) + ((vol*‘𝐵) + (𝐶 / 2)))) |
405 | 168, 392,
404 | 3brtr4d 5102 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘(2 · (⌊‘((𝑘 + 1) / 2)))) ≤
(((vol*‘𝐴) +
(vol*‘𝐵)) + 𝐶)) |
406 | 26, 61, 70, 100, 405 | letrd 11062 |
1
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) |