![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0f | Structured version Visualization version GIF version |
Description: Auxiliary lemma 6 for gausslemma2d 27294. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2dlem0.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0f | ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | eldifsn 4786 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
3 | prm23ge5 16775 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
4 | eqneqall 2946 | . . . . . . 7 ⊢ (𝑃 = 2 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
5 | orc 866 | . . . . . . . 8 ⊢ (𝑃 = 3 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
6 | 5 | a1d 25 | . . . . . . 7 ⊢ (𝑃 = 3 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
7 | olc 867 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘5) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
8 | 7 | a1d 25 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
9 | 4, 6, 8 | 3jaoi 1425 | . . . . . 6 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
11 | 10 | imp 406 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
12 | 2, 11 | sylbi 216 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
13 | fldiv4p1lem1div2 13824 | . . 3 ⊢ ((𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2)) | |
14 | 1, 12, 13 | 3syl 18 | . 2 ⊢ (𝜑 → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2)) |
15 | gausslemma2dlem0.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
16 | 15 | oveq1i 7424 | . 2 ⊢ (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1) |
17 | gausslemma2dlem0.h | . 2 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
18 | 14, 16, 17 | 3brtr4g 5176 | 1 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∨ w3o 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 1c1 11131 + caddc 11133 ≤ cle 11271 − cmin 11466 / cdiv 11893 2c2 12289 3c3 12290 4c4 12291 5c5 12292 ℤ≥cuz 12844 ⌊cfl 13779 ℙcprime 16633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fz 13509 df-fl 13781 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-prm 16634 |
This theorem is referenced by: gausslemma2dlem5 27291 |
Copyright terms: Public domain | W3C validator |