MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0f Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0f 27213
Description: Auxiliary lemma 6 for gausslemma2d 27226. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0f (𝜑 → (𝑀 + 1) ≤ 𝐻)

Proof of Theorem gausslemma2dlem0f
StepHypRef Expression
1 gausslemma2dlem0.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifsn 4783 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
3 prm23ge5 16749 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
4 eqneqall 2943 . . . . . . 7 (𝑃 = 2 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
5 orc 864 . . . . . . . 8 (𝑃 = 3 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
65a1d 25 . . . . . . 7 (𝑃 = 3 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
7 olc 865 . . . . . . . 8 (𝑃 ∈ (ℤ‘5) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
87a1d 25 . . . . . . 7 (𝑃 ∈ (ℤ‘5) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
94, 6, 83jaoi 1424 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
103, 9syl 17 . . . . 5 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
1110imp 406 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
122, 11sylbi 216 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
13 fldiv4p1lem1div2 13798 . . 3 ((𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2))
141, 12, 133syl 18 . 2 (𝜑 → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2))
15 gausslemma2dlem0.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
1615oveq1i 7412 . 2 (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1)
17 gausslemma2dlem0.h . 2 𝐻 = ((𝑃 − 1) / 2)
1814, 16, 173brtr4g 5173 1 (𝜑 → (𝑀 + 1) ≤ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3o 1083   = wceq 1533  wcel 2098  wne 2932  cdif 3938  {csn 4621   class class class wbr 5139  cfv 6534  (class class class)co 7402  1c1 11108   + caddc 11110  cle 11247  cmin 11442   / cdiv 11869  2c2 12265  3c3 12266  4c4 12267  5c5 12268  cuz 12820  cfl 13753  cprime 16607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-fz 13483  df-fl 13755  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-dvds 16197  df-prm 16608
This theorem is referenced by:  gausslemma2dlem5  27223
  Copyright terms: Public domain W3C validator