Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0f | Structured version Visualization version GIF version |
Description: Auxiliary lemma 6 for gausslemma2d 26123. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2dlem0.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0f | ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | eldifsn 4685 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
3 | prm23ge5 16265 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
4 | eqneqall 2946 | . . . . . . 7 ⊢ (𝑃 = 2 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
5 | orc 866 | . . . . . . . 8 ⊢ (𝑃 = 3 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
6 | 5 | a1d 25 | . . . . . . 7 ⊢ (𝑃 = 3 → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
7 | olc 867 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℤ≥‘5) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) | |
8 | 7 | a1d 25 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
9 | 4, 6, 8 | 3jaoi 1428 | . . . . . 6 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
11 | 10 | imp 410 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
12 | 2, 11 | sylbi 220 | . . 3 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
13 | fldiv4p1lem1div2 13309 | . . 3 ⊢ ((𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2)) | |
14 | 1, 12, 13 | 3syl 18 | . 2 ⊢ (𝜑 → ((⌊‘(𝑃 / 4)) + 1) ≤ ((𝑃 − 1) / 2)) |
15 | gausslemma2dlem0.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
16 | 15 | oveq1i 7193 | . 2 ⊢ (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1) |
17 | gausslemma2dlem0.h | . 2 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
18 | 14, 16, 17 | 3brtr4g 5074 | 1 ⊢ (𝜑 → (𝑀 + 1) ≤ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∖ cdif 3850 {csn 4526 class class class wbr 5040 ‘cfv 6350 (class class class)co 7183 1c1 10629 + caddc 10631 ≤ cle 10767 − cmin 10961 / cdiv 11388 2c2 11784 3c3 11785 4c4 11786 5c5 11787 ℤ≥cuz 12337 ⌊cfl 13264 ℙcprime 16125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 ax-pre-sup 10706 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-1o 8144 df-2o 8145 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-sup 8992 df-inf 8993 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-div 11389 df-nn 11730 df-2 11792 df-3 11793 df-4 11794 df-5 11795 df-6 11796 df-n0 11990 df-z 12076 df-uz 12338 df-rp 12486 df-fz 12995 df-fl 13266 df-seq 13474 df-exp 13535 df-cj 14561 df-re 14562 df-im 14563 df-sqrt 14697 df-abs 14698 df-dvds 15713 df-prm 16126 |
This theorem is referenced by: gausslemma2dlem5 26120 |
Copyright terms: Public domain | W3C validator |