MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crth Structured version   Visualization version   GIF version

Theorem crth 16657
Description: The Chinese Remainder Theorem: the function that maps ๐‘ฅ to its remainder classes mod ๐‘€ and mod ๐‘ is 1-1 and onto when ๐‘€ and ๐‘ are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1 ๐‘† = (0..^(๐‘€ ยท ๐‘))
crth.2 ๐‘‡ = ((0..^๐‘€) ร— (0..^๐‘))
crth.3 ๐น = (๐‘ฅ โˆˆ ๐‘† โ†ฆ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ)
crth.4 (๐œ‘ โ†’ (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„• โˆง (๐‘€ gcd ๐‘) = 1))
Assertion
Ref Expression
crth (๐œ‘ โ†’ ๐น:๐‘†โ€“1-1-ontoโ†’๐‘‡)
Distinct variable groups:   ๐‘ฅ,๐‘€   ๐œ‘,๐‘ฅ   ๐‘ฅ,๐‘†   ๐‘ฅ,๐‘‡   ๐‘ฅ,๐‘
Allowed substitution hint:   ๐น(๐‘ฅ)

Proof of Theorem crth
Dummy variables ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13579 . . . . . 6 (๐‘ฅ โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ ๐‘ฅ โˆˆ โ„ค)
2 crth.1 . . . . . 6 ๐‘† = (0..^(๐‘€ ยท ๐‘))
31, 2eleq2s 2856 . . . . 5 (๐‘ฅ โˆˆ ๐‘† โ†’ ๐‘ฅ โˆˆ โ„ค)
4 simpr 486 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ๐‘ฅ โˆˆ โ„ค)
5 crth.4 . . . . . . . . . 10 (๐œ‘ โ†’ (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„• โˆง (๐‘€ gcd ๐‘) = 1))
65simp1d 1143 . . . . . . . . 9 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•)
76adantr 482 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ๐‘€ โˆˆ โ„•)
8 zmodfzo 13806 . . . . . . . 8 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐‘ฅ mod ๐‘€) โˆˆ (0..^๐‘€))
94, 7, 8syl2anc 585 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ (๐‘ฅ mod ๐‘€) โˆˆ (0..^๐‘€))
105simp2d 1144 . . . . . . . . 9 (๐œ‘ โ†’ ๐‘ โˆˆ โ„•)
1110adantr 482 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„•)
12 zmodfzo 13806 . . . . . . . 8 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ฅ mod ๐‘) โˆˆ (0..^๐‘))
134, 11, 12syl2anc 585 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ (๐‘ฅ mod ๐‘) โˆˆ (0..^๐‘))
149, 13opelxpd 5676 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ โˆˆ ((0..^๐‘€) ร— (0..^๐‘)))
15 crth.2 . . . . . 6 ๐‘‡ = ((0..^๐‘€) ร— (0..^๐‘))
1614, 15eleqtrrdi 2849 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ โˆˆ ๐‘‡)
173, 16sylan2 594 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐‘†) โ†’ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ โˆˆ ๐‘‡)
18 crth.3 . . . 4 ๐น = (๐‘ฅ โˆˆ ๐‘† โ†ฆ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ)
1917, 18fmptd 7067 . . 3 (๐œ‘ โ†’ ๐น:๐‘†โŸถ๐‘‡)
20 oveq1 7369 . . . . . . . . . 10 (๐‘ฅ = ๐‘ฆ โ†’ (๐‘ฅ mod ๐‘€) = (๐‘ฆ mod ๐‘€))
21 oveq1 7369 . . . . . . . . . 10 (๐‘ฅ = ๐‘ฆ โ†’ (๐‘ฅ mod ๐‘) = (๐‘ฆ mod ๐‘))
2220, 21opeq12d 4843 . . . . . . . . 9 (๐‘ฅ = ๐‘ฆ โ†’ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ = โŸจ(๐‘ฆ mod ๐‘€), (๐‘ฆ mod ๐‘)โŸฉ)
23 opex 5426 . . . . . . . . 9 โŸจ(๐‘ฆ mod ๐‘€), (๐‘ฆ mod ๐‘)โŸฉ โˆˆ V
2422, 18, 23fvmpt 6953 . . . . . . . 8 (๐‘ฆ โˆˆ ๐‘† โ†’ (๐นโ€˜๐‘ฆ) = โŸจ(๐‘ฆ mod ๐‘€), (๐‘ฆ mod ๐‘)โŸฉ)
2524ad2antrl 727 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐นโ€˜๐‘ฆ) = โŸจ(๐‘ฆ mod ๐‘€), (๐‘ฆ mod ๐‘)โŸฉ)
26 oveq1 7369 . . . . . . . . . 10 (๐‘ฅ = ๐‘ง โ†’ (๐‘ฅ mod ๐‘€) = (๐‘ง mod ๐‘€))
27 oveq1 7369 . . . . . . . . . 10 (๐‘ฅ = ๐‘ง โ†’ (๐‘ฅ mod ๐‘) = (๐‘ง mod ๐‘))
2826, 27opeq12d 4843 . . . . . . . . 9 (๐‘ฅ = ๐‘ง โ†’ โŸจ(๐‘ฅ mod ๐‘€), (๐‘ฅ mod ๐‘)โŸฉ = โŸจ(๐‘ง mod ๐‘€), (๐‘ง mod ๐‘)โŸฉ)
29 opex 5426 . . . . . . . . 9 โŸจ(๐‘ง mod ๐‘€), (๐‘ง mod ๐‘)โŸฉ โˆˆ V
3028, 18, 29fvmpt 6953 . . . . . . . 8 (๐‘ง โˆˆ ๐‘† โ†’ (๐นโ€˜๐‘ง) = โŸจ(๐‘ง mod ๐‘€), (๐‘ง mod ๐‘)โŸฉ)
3130ad2antll 728 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐นโ€˜๐‘ง) = โŸจ(๐‘ง mod ๐‘€), (๐‘ง mod ๐‘)โŸฉ)
3225, 31eqeq12d 2753 . . . . . 6 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐นโ€˜๐‘ฆ) = (๐นโ€˜๐‘ง) โ†” โŸจ(๐‘ฆ mod ๐‘€), (๐‘ฆ mod ๐‘)โŸฉ = โŸจ(๐‘ง mod ๐‘€), (๐‘ง mod ๐‘)โŸฉ))
33 ovex 7395 . . . . . . 7 (๐‘ฆ mod ๐‘€) โˆˆ V
34 ovex 7395 . . . . . . 7 (๐‘ฆ mod ๐‘) โˆˆ V
3533, 34opth 5438 . . . . . 6 (โŸจ(๐‘ฆ mod ๐‘€), (๐‘ฆ mod ๐‘)โŸฉ = โŸจ(๐‘ง mod ๐‘€), (๐‘ง mod ๐‘)โŸฉ โ†” ((๐‘ฆ mod ๐‘€) = (๐‘ง mod ๐‘€) โˆง (๐‘ฆ mod ๐‘) = (๐‘ง mod ๐‘)))
3632, 35bitrdi 287 . . . . 5 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐นโ€˜๐‘ฆ) = (๐นโ€˜๐‘ง) โ†” ((๐‘ฆ mod ๐‘€) = (๐‘ง mod ๐‘€) โˆง (๐‘ฆ mod ๐‘) = (๐‘ง mod ๐‘))))
376adantr 482 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘€ โˆˆ โ„•)
3837nnzd 12533 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘€ โˆˆ โ„ค)
3910adantr 482 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ โˆˆ โ„•)
4039nnzd 12533 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ โˆˆ โ„ค)
41 simprl 770 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ฆ โˆˆ ๐‘†)
4241, 2eleqtrdi 2848 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ฆ โˆˆ (0..^(๐‘€ ยท ๐‘)))
43 elfzoelz 13579 . . . . . . . . 9 (๐‘ฆ โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ ๐‘ฆ โˆˆ โ„ค)
4442, 43syl 17 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ฆ โˆˆ โ„ค)
45 simprr 772 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ง โˆˆ ๐‘†)
4645, 2eleqtrdi 2848 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ง โˆˆ (0..^(๐‘€ ยท ๐‘)))
47 elfzoelz 13579 . . . . . . . . 9 (๐‘ง โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ ๐‘ง โˆˆ โ„ค)
4846, 47syl 17 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ง โˆˆ โ„ค)
4944, 48zsubcld 12619 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘ฆ โˆ’ ๐‘ง) โˆˆ โ„ค)
505simp3d 1145 . . . . . . . 8 (๐œ‘ โ†’ (๐‘€ gcd ๐‘) = 1)
5150adantr 482 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘€ gcd ๐‘) = 1)
52 coprmdvds2 16537 . . . . . . 7 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐‘ฆ โˆ’ ๐‘ง) โˆˆ โ„ค) โˆง (๐‘€ gcd ๐‘) = 1) โ†’ ((๐‘€ โˆฅ (๐‘ฆ โˆ’ ๐‘ง) โˆง ๐‘ โˆฅ (๐‘ฆ โˆ’ ๐‘ง)) โ†’ (๐‘€ ยท ๐‘) โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
5338, 40, 49, 51, 52syl31anc 1374 . . . . . 6 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐‘€ โˆฅ (๐‘ฆ โˆ’ ๐‘ง) โˆง ๐‘ โˆฅ (๐‘ฆ โˆ’ ๐‘ง)) โ†’ (๐‘€ ยท ๐‘) โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
54 moddvds 16154 . . . . . . . 8 ((๐‘€ โˆˆ โ„• โˆง ๐‘ฆ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โ†’ ((๐‘ฆ mod ๐‘€) = (๐‘ง mod ๐‘€) โ†” ๐‘€ โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
5537, 44, 48, 54syl3anc 1372 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐‘ฆ mod ๐‘€) = (๐‘ง mod ๐‘€) โ†” ๐‘€ โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
56 moddvds 16154 . . . . . . . 8 ((๐‘ โˆˆ โ„• โˆง ๐‘ฆ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โ†’ ((๐‘ฆ mod ๐‘) = (๐‘ง mod ๐‘) โ†” ๐‘ โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
5739, 44, 48, 56syl3anc 1372 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐‘ฆ mod ๐‘) = (๐‘ง mod ๐‘) โ†” ๐‘ โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
5855, 57anbi12d 632 . . . . . 6 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (((๐‘ฆ mod ๐‘€) = (๐‘ง mod ๐‘€) โˆง (๐‘ฆ mod ๐‘) = (๐‘ง mod ๐‘)) โ†” (๐‘€ โˆฅ (๐‘ฆ โˆ’ ๐‘ง) โˆง ๐‘ โˆฅ (๐‘ฆ โˆ’ ๐‘ง))))
5944zred 12614 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ฆ โˆˆ โ„)
6037, 39nnmulcld 12213 . . . . . . . . . 10 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„•)
6160nnrpd 12962 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„+)
62 elfzole1 13587 . . . . . . . . . 10 (๐‘ฆ โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ 0 โ‰ค ๐‘ฆ)
6342, 62syl 17 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ 0 โ‰ค ๐‘ฆ)
64 elfzolt2 13588 . . . . . . . . . 10 (๐‘ฆ โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ ๐‘ฆ < (๐‘€ ยท ๐‘))
6542, 64syl 17 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ฆ < (๐‘€ ยท ๐‘))
66 modid 13808 . . . . . . . . 9 (((๐‘ฆ โˆˆ โ„ โˆง (๐‘€ ยท ๐‘) โˆˆ โ„+) โˆง (0 โ‰ค ๐‘ฆ โˆง ๐‘ฆ < (๐‘€ ยท ๐‘))) โ†’ (๐‘ฆ mod (๐‘€ ยท ๐‘)) = ๐‘ฆ)
6759, 61, 63, 65, 66syl22anc 838 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘ฆ mod (๐‘€ ยท ๐‘)) = ๐‘ฆ)
6848zred 12614 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ง โˆˆ โ„)
69 elfzole1 13587 . . . . . . . . . 10 (๐‘ง โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ 0 โ‰ค ๐‘ง)
7046, 69syl 17 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ 0 โ‰ค ๐‘ง)
71 elfzolt2 13588 . . . . . . . . . 10 (๐‘ง โˆˆ (0..^(๐‘€ ยท ๐‘)) โ†’ ๐‘ง < (๐‘€ ยท ๐‘))
7246, 71syl 17 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ๐‘ง < (๐‘€ ยท ๐‘))
73 modid 13808 . . . . . . . . 9 (((๐‘ง โˆˆ โ„ โˆง (๐‘€ ยท ๐‘) โˆˆ โ„+) โˆง (0 โ‰ค ๐‘ง โˆง ๐‘ง < (๐‘€ ยท ๐‘))) โ†’ (๐‘ง mod (๐‘€ ยท ๐‘)) = ๐‘ง)
7468, 61, 70, 72, 73syl22anc 838 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘ง mod (๐‘€ ยท ๐‘)) = ๐‘ง)
7567, 74eqeq12d 2753 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐‘ฆ mod (๐‘€ ยท ๐‘)) = (๐‘ง mod (๐‘€ ยท ๐‘)) โ†” ๐‘ฆ = ๐‘ง))
76 moddvds 16154 . . . . . . . 8 (((๐‘€ ยท ๐‘) โˆˆ โ„• โˆง ๐‘ฆ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โ†’ ((๐‘ฆ mod (๐‘€ ยท ๐‘)) = (๐‘ง mod (๐‘€ ยท ๐‘)) โ†” (๐‘€ ยท ๐‘) โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
7760, 44, 48, 76syl3anc 1372 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐‘ฆ mod (๐‘€ ยท ๐‘)) = (๐‘ง mod (๐‘€ ยท ๐‘)) โ†” (๐‘€ ยท ๐‘) โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
7875, 77bitr3d 281 . . . . . 6 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (๐‘ฆ = ๐‘ง โ†” (๐‘€ ยท ๐‘) โˆฅ (๐‘ฆ โˆ’ ๐‘ง)))
7953, 58, 783imtr4d 294 . . . . 5 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ (((๐‘ฆ mod ๐‘€) = (๐‘ง mod ๐‘€) โˆง (๐‘ฆ mod ๐‘) = (๐‘ง mod ๐‘)) โ†’ ๐‘ฆ = ๐‘ง))
8036, 79sylbid 239 . . . 4 ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘† โˆง ๐‘ง โˆˆ ๐‘†)) โ†’ ((๐นโ€˜๐‘ฆ) = (๐นโ€˜๐‘ง) โ†’ ๐‘ฆ = ๐‘ง))
8180ralrimivva 3198 . . 3 (๐œ‘ โ†’ โˆ€๐‘ฆ โˆˆ ๐‘† โˆ€๐‘ง โˆˆ ๐‘† ((๐นโ€˜๐‘ฆ) = (๐นโ€˜๐‘ง) โ†’ ๐‘ฆ = ๐‘ง))
82 dff13 7207 . . 3 (๐น:๐‘†โ€“1-1โ†’๐‘‡ โ†” (๐น:๐‘†โŸถ๐‘‡ โˆง โˆ€๐‘ฆ โˆˆ ๐‘† โˆ€๐‘ง โˆˆ ๐‘† ((๐นโ€˜๐‘ฆ) = (๐นโ€˜๐‘ง) โ†’ ๐‘ฆ = ๐‘ง)))
8319, 81, 82sylanbrc 584 . 2 (๐œ‘ โ†’ ๐น:๐‘†โ€“1-1โ†’๐‘‡)
84 nnnn0 12427 . . . . . 6 (๐‘€ โˆˆ โ„• โ†’ ๐‘€ โˆˆ โ„•0)
85 nnnn0 12427 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„•0)
86 nn0mulcl 12456 . . . . . . . . 9 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„•0)
87 hashfzo0 14337 . . . . . . . . 9 ((๐‘€ ยท ๐‘) โˆˆ โ„•0 โ†’ (โ™ฏโ€˜(0..^(๐‘€ ยท ๐‘))) = (๐‘€ ยท ๐‘))
8886, 87syl 17 . . . . . . . 8 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (โ™ฏโ€˜(0..^(๐‘€ ยท ๐‘))) = (๐‘€ ยท ๐‘))
89 fzofi 13886 . . . . . . . . . 10 (0..^๐‘€) โˆˆ Fin
90 fzofi 13886 . . . . . . . . . 10 (0..^๐‘) โˆˆ Fin
91 hashxp 14341 . . . . . . . . . 10 (((0..^๐‘€) โˆˆ Fin โˆง (0..^๐‘) โˆˆ Fin) โ†’ (โ™ฏโ€˜((0..^๐‘€) ร— (0..^๐‘))) = ((โ™ฏโ€˜(0..^๐‘€)) ยท (โ™ฏโ€˜(0..^๐‘))))
9289, 90, 91mp2an 691 . . . . . . . . 9 (โ™ฏโ€˜((0..^๐‘€) ร— (0..^๐‘))) = ((โ™ฏโ€˜(0..^๐‘€)) ยท (โ™ฏโ€˜(0..^๐‘)))
93 hashfzo0 14337 . . . . . . . . . 10 (๐‘€ โˆˆ โ„•0 โ†’ (โ™ฏโ€˜(0..^๐‘€)) = ๐‘€)
94 hashfzo0 14337 . . . . . . . . . 10 (๐‘ โˆˆ โ„•0 โ†’ (โ™ฏโ€˜(0..^๐‘)) = ๐‘)
9593, 94oveqan12d 7381 . . . . . . . . 9 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ ((โ™ฏโ€˜(0..^๐‘€)) ยท (โ™ฏโ€˜(0..^๐‘))) = (๐‘€ ยท ๐‘))
9692, 95eqtrid 2789 . . . . . . . 8 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (โ™ฏโ€˜((0..^๐‘€) ร— (0..^๐‘))) = (๐‘€ ยท ๐‘))
9788, 96eqtr4d 2780 . . . . . . 7 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (โ™ฏโ€˜(0..^(๐‘€ ยท ๐‘))) = (โ™ฏโ€˜((0..^๐‘€) ร— (0..^๐‘))))
98 fzofi 13886 . . . . . . . 8 (0..^(๐‘€ ยท ๐‘)) โˆˆ Fin
99 xpfi 9268 . . . . . . . . 9 (((0..^๐‘€) โˆˆ Fin โˆง (0..^๐‘) โˆˆ Fin) โ†’ ((0..^๐‘€) ร— (0..^๐‘)) โˆˆ Fin)
10089, 90, 99mp2an 691 . . . . . . . 8 ((0..^๐‘€) ร— (0..^๐‘)) โˆˆ Fin
101 hashen 14254 . . . . . . . 8 (((0..^(๐‘€ ยท ๐‘)) โˆˆ Fin โˆง ((0..^๐‘€) ร— (0..^๐‘)) โˆˆ Fin) โ†’ ((โ™ฏโ€˜(0..^(๐‘€ ยท ๐‘))) = (โ™ฏโ€˜((0..^๐‘€) ร— (0..^๐‘))) โ†” (0..^(๐‘€ ยท ๐‘)) โ‰ˆ ((0..^๐‘€) ร— (0..^๐‘))))
10298, 100, 101mp2an 691 . . . . . . 7 ((โ™ฏโ€˜(0..^(๐‘€ ยท ๐‘))) = (โ™ฏโ€˜((0..^๐‘€) ร— (0..^๐‘))) โ†” (0..^(๐‘€ ยท ๐‘)) โ‰ˆ ((0..^๐‘€) ร— (0..^๐‘)))
10397, 102sylib 217 . . . . . 6 ((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (0..^(๐‘€ ยท ๐‘)) โ‰ˆ ((0..^๐‘€) ร— (0..^๐‘)))
10484, 85, 103syl2an 597 . . . . 5 ((๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•) โ†’ (0..^(๐‘€ ยท ๐‘)) โ‰ˆ ((0..^๐‘€) ร— (0..^๐‘)))
1056, 10, 104syl2anc 585 . . . 4 (๐œ‘ โ†’ (0..^(๐‘€ ยท ๐‘)) โ‰ˆ ((0..^๐‘€) ร— (0..^๐‘)))
106105, 2, 153brtr4g 5144 . . 3 (๐œ‘ โ†’ ๐‘† โ‰ˆ ๐‘‡)
10715, 100eqeltri 2834 . . 3 ๐‘‡ โˆˆ Fin
108 f1finf1o 9222 . . 3 ((๐‘† โ‰ˆ ๐‘‡ โˆง ๐‘‡ โˆˆ Fin) โ†’ (๐น:๐‘†โ€“1-1โ†’๐‘‡ โ†” ๐น:๐‘†โ€“1-1-ontoโ†’๐‘‡))
109106, 107, 108sylancl 587 . 2 (๐œ‘ โ†’ (๐น:๐‘†โ€“1-1โ†’๐‘‡ โ†” ๐น:๐‘†โ€“1-1-ontoโ†’๐‘‡))
11083, 109mpbid 231 1 (๐œ‘ โ†’ ๐น:๐‘†โ€“1-1-ontoโ†’๐‘‡)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 397   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107  โˆ€wral 3065  โŸจcop 4597   class class class wbr 5110   โ†ฆ cmpt 5193   ร— cxp 5636  โŸถwf 6497  โ€“1-1โ†’wf1 6498  โ€“1-1-ontoโ†’wf1o 6500  โ€˜cfv 6501  (class class class)co 7362   โ‰ˆ cen 8887  Fincfn 8890  โ„cr 11057  0cc0 11058  1c1 11059   ยท cmul 11063   < clt 11196   โ‰ค cle 11197   โˆ’ cmin 11392  โ„•cn 12160  โ„•0cn0 12420  โ„คcz 12506  โ„+crp 12922  ..^cfzo 13574   mod cmo 13781  โ™ฏchash 14237   โˆฅ cdvds 16143   gcd cgcd 16381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-dvds 16144  df-gcd 16382
This theorem is referenced by:  phimullem  16658
  Copyright terms: Public domain W3C validator