MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crth Structured version   Visualization version   GIF version

Theorem crth 16797
Description: The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1 𝑆 = (0..^(𝑀 · 𝑁))
crth.2 𝑇 = ((0..^𝑀) × (0..^𝑁))
crth.3 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
crth.4 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
Assertion
Ref Expression
crth (𝜑𝐹:𝑆1-1-onto𝑇)
Distinct variable groups:   𝑥,𝑀   𝜑,𝑥   𝑥,𝑆   𝑥,𝑇   𝑥,𝑁
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem crth
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13676 . . . . . 6 (𝑥 ∈ (0..^(𝑀 · 𝑁)) → 𝑥 ∈ ℤ)
2 crth.1 . . . . . 6 𝑆 = (0..^(𝑀 · 𝑁))
31, 2eleq2s 2852 . . . . 5 (𝑥𝑆𝑥 ∈ ℤ)
4 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5 crth.4 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
65simp1d 1142 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
76adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ ℕ)
8 zmodfzo 13911 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
94, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
105simp2d 1143 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
12 zmodfzo 13911 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
134, 11, 12syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
149, 13opelxpd 5693 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
15 crth.2 . . . . . 6 𝑇 = ((0..^𝑀) × (0..^𝑁))
1614, 15eleqtrrdi 2845 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
173, 16sylan2 593 . . . 4 ((𝜑𝑥𝑆) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
18 crth.3 . . . 4 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
1917, 18fmptd 7104 . . 3 (𝜑𝐹:𝑆𝑇)
20 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑀) = (𝑦 mod 𝑀))
21 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁))
2220, 21opeq12d 4857 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
23 opex 5439 . . . . . . . . 9 ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ ∈ V
2422, 18, 23fvmpt 6986 . . . . . . . 8 (𝑦𝑆 → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
2524ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
26 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑀) = (𝑧 mod 𝑀))
27 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑁) = (𝑧 mod 𝑁))
2826, 27opeq12d 4857 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
29 opex 5439 . . . . . . . . 9 ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ∈ V
3028, 18, 29fvmpt 6986 . . . . . . . 8 (𝑧𝑆 → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
3130ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
3225, 31eqeq12d 2751 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩))
33 ovex 7438 . . . . . . 7 (𝑦 mod 𝑀) ∈ V
34 ovex 7438 . . . . . . 7 (𝑦 mod 𝑁) ∈ V
3533, 34opth 5451 . . . . . 6 (⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)))
3632, 35bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))))
376adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℕ)
3837nnzd 12615 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℤ)
3910adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℕ)
4039nnzd 12615 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℤ)
41 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
4241, 2eleqtrdi 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (0..^(𝑀 · 𝑁)))
43 elfzoelz 13676 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 ∈ ℤ)
4442, 43syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℤ)
45 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
4645, 2eleqtrdi 2844 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (0..^(𝑀 · 𝑁)))
47 elfzoelz 13676 . . . . . . . . 9 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 ∈ ℤ)
4846, 47syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℤ)
4944, 48zsubcld 12702 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦𝑧) ∈ ℤ)
505simp3d 1144 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
5150adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 gcd 𝑁) = 1)
52 coprmdvds2 16673 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑦𝑧) ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
5338, 40, 49, 51, 52syl31anc 1375 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
54 moddvds 16283 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
5537, 44, 48, 54syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
56 moddvds 16283 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
5739, 44, 48, 56syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
5855, 57anbi12d 632 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) ↔ (𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧))))
5944zred 12697 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℝ)
6037, 39nnmulcld 12293 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℕ)
6160nnrpd 13049 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℝ+)
62 elfzole1 13684 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑦)
6342, 62syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑦)
64 elfzolt2 13685 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 < (𝑀 · 𝑁))
6542, 64syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 < (𝑀 · 𝑁))
66 modid 13913 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < (𝑀 · 𝑁))) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
6759, 61, 63, 65, 66syl22anc 838 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
6848zred 12697 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℝ)
69 elfzole1 13684 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑧)
7046, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑧)
71 elfzolt2 13685 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 < (𝑀 · 𝑁))
7246, 71syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 < (𝑀 · 𝑁))
73 modid 13913 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < (𝑀 · 𝑁))) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
7468, 61, 70, 72, 73syl22anc 838 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
7567, 74eqeq12d 2751 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ 𝑦 = 𝑧))
76 moddvds 16283 . . . . . . . 8 (((𝑀 · 𝑁) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7760, 44, 48, 76syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7875, 77bitr3d 281 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 = 𝑧 ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7953, 58, 783imtr4d 294 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) → 𝑦 = 𝑧))
8036, 79sylbid 240 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
8180ralrimivva 3187 . . 3 (𝜑 → ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
82 dff13 7247 . . 3 (𝐹:𝑆1-1𝑇 ↔ (𝐹:𝑆𝑇 ∧ ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
8319, 81, 82sylanbrc 583 . 2 (𝜑𝐹:𝑆1-1𝑇)
84 nnnn0 12508 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
85 nnnn0 12508 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
86 nn0mulcl 12537 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
87 hashfzo0 14448 . . . . . . . . 9 ((𝑀 · 𝑁) ∈ ℕ0 → (♯‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
8886, 87syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
89 fzofi 13992 . . . . . . . . . 10 (0..^𝑀) ∈ Fin
90 fzofi 13992 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
91 hashxp 14452 . . . . . . . . . 10 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (♯‘((0..^𝑀) × (0..^𝑁))) = ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))))
9289, 90, 91mp2an 692 . . . . . . . . 9 (♯‘((0..^𝑀) × (0..^𝑁))) = ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁)))
93 hashfzo0 14448 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
94 hashfzo0 14448 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
9593, 94oveqan12d 7424 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))) = (𝑀 · 𝑁))
9692, 95eqtrid 2782 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘((0..^𝑀) × (0..^𝑁))) = (𝑀 · 𝑁))
9788, 96eqtr4d 2773 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))))
98 fzofi 13992 . . . . . . . 8 (0..^(𝑀 · 𝑁)) ∈ Fin
99 xpfi 9330 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → ((0..^𝑀) × (0..^𝑁)) ∈ Fin)
10089, 90, 99mp2an 692 . . . . . . . 8 ((0..^𝑀) × (0..^𝑁)) ∈ Fin
101 hashen 14365 . . . . . . . 8 (((0..^(𝑀 · 𝑁)) ∈ Fin ∧ ((0..^𝑀) × (0..^𝑁)) ∈ Fin) → ((♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))))
10298, 100, 101mp2an 692 . . . . . . 7 ((♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
10397, 102sylib 218 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
10484, 85, 103syl2an 596 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
1056, 10, 104syl2anc 584 . . . 4 (𝜑 → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
106105, 2, 153brtr4g 5153 . . 3 (𝜑𝑆𝑇)
10715, 100eqeltri 2830 . . 3 𝑇 ∈ Fin
108 f1finf1o 9277 . . 3 ((𝑆𝑇𝑇 ∈ Fin) → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
109106, 107, 108sylancl 586 . 2 (𝜑 → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
11083, 109mpbid 232 1 (𝜑𝐹:𝑆1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cop 4607   class class class wbr 5119  cmpt 5201   × cxp 5652  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cen 8956  Fincfn 8959  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  cmin 11466  cn 12240  0cn0 12501  cz 12588  +crp 13008  ..^cfzo 13671   mod cmo 13886  chash 14348  cdvds 16272   gcd cgcd 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514
This theorem is referenced by:  phimullem  16798
  Copyright terms: Public domain W3C validator