Step | Hyp | Ref
| Expression |
1 | | elfzoelz 13100 |
. . . . . 6
⊢ (𝑥 ∈ (0..^(𝑀 · 𝑁)) → 𝑥 ∈ ℤ) |
2 | | crth.1 |
. . . . . 6
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) |
3 | 1, 2 | eleq2s 2870 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ ℤ) |
4 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
5 | | crth.4 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) |
6 | 5 | simp1d 1139 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
7 | 6 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℕ) |
8 | | zmodfzo 13324 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑥 mod 𝑀) ∈ (0..^𝑀)) |
9 | 4, 7, 8 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥 mod 𝑀) ∈ (0..^𝑀)) |
10 | 5 | simp2d 1140 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
11 | 10 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ) |
12 | | zmodfzo 13324 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑥 mod 𝑁) ∈ (0..^𝑁)) |
13 | 4, 11, 12 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥 mod 𝑁) ∈ (0..^𝑁)) |
14 | 9, 13 | opelxpd 5566 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ ((0..^𝑀) × (0..^𝑁))) |
15 | | crth.2 |
. . . . . 6
⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) |
16 | 14, 15 | eleqtrrdi 2863 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ 𝑇) |
17 | 3, 16 | sylan2 595 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 ∈ 𝑇) |
18 | | crth.3 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) |
19 | 17, 18 | fmptd 6875 |
. . 3
⊢ (𝜑 → 𝐹:𝑆⟶𝑇) |
20 | | oveq1 7163 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 mod 𝑀) = (𝑦 mod 𝑀)) |
21 | | oveq1 7163 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁)) |
22 | 20, 21 | opeq12d 4774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 = 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉) |
23 | | opex 5328 |
. . . . . . . . 9
⊢
〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉 ∈ V |
24 | 22, 18, 23 | fvmpt 6764 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑆 → (𝐹‘𝑦) = 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉) |
25 | 24 | ad2antrl 727 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹‘𝑦) = 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉) |
26 | | oveq1 7163 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 mod 𝑀) = (𝑧 mod 𝑀)) |
27 | | oveq1 7163 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 mod 𝑁) = (𝑧 mod 𝑁)) |
28 | 26, 27 | opeq12d 4774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉 = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉) |
29 | | opex 5328 |
. . . . . . . . 9
⊢
〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉 ∈ V |
30 | 28, 18, 29 | fvmpt 6764 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → (𝐹‘𝑧) = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉) |
31 | 30 | ad2antll 728 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹‘𝑧) = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉) |
32 | 25, 31 | eqeq12d 2774 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ 〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉 = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉)) |
33 | | ovex 7189 |
. . . . . . 7
⊢ (𝑦 mod 𝑀) ∈ V |
34 | | ovex 7189 |
. . . . . . 7
⊢ (𝑦 mod 𝑁) ∈ V |
35 | 33, 34 | opth 5340 |
. . . . . 6
⊢
(〈(𝑦 mod 𝑀), (𝑦 mod 𝑁)〉 = 〈(𝑧 mod 𝑀), (𝑧 mod 𝑁)〉 ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))) |
36 | 32, 35 | bitrdi 290 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)))) |
37 | 6 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑀 ∈ ℕ) |
38 | 37 | nnzd 12138 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
39 | 10 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑁 ∈ ℕ) |
40 | 39 | nnzd 12138 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑁 ∈ ℤ) |
41 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
42 | 41, 2 | eleqtrdi 2862 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ (0..^(𝑀 · 𝑁))) |
43 | | elfzoelz 13100 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 ∈ ℤ) |
44 | 42, 43 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ ℤ) |
45 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
46 | 45, 2 | eleqtrdi 2862 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ (0..^(𝑀 · 𝑁))) |
47 | | elfzoelz 13100 |
. . . . . . . . 9
⊢ (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 ∈ ℤ) |
48 | 46, 47 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ ℤ) |
49 | 44, 48 | zsubcld 12144 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦 − 𝑧) ∈ ℤ) |
50 | 5 | simp3d 1141 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
51 | 50 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑀 gcd 𝑁) = 1) |
52 | | coprmdvds2 16064 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑦 − 𝑧) ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ (𝑦 − 𝑧) ∧ 𝑁 ∥ (𝑦 − 𝑧)) → (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
53 | 38, 40, 49, 51, 52 | syl31anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑀 ∥ (𝑦 − 𝑧) ∧ 𝑁 ∥ (𝑦 − 𝑧)) → (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
54 | | moddvds 15679 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦 − 𝑧))) |
55 | 37, 44, 48, 54 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦 − 𝑧))) |
56 | | moddvds 15679 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦 − 𝑧))) |
57 | 39, 44, 48, 56 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦 − 𝑧))) |
58 | 55, 57 | anbi12d 633 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) ↔ (𝑀 ∥ (𝑦 − 𝑧) ∧ 𝑁 ∥ (𝑦 − 𝑧)))) |
59 | 44 | zred 12139 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 ∈ ℝ) |
60 | 37, 39 | nnmulcld 11740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑀 · 𝑁) ∈ ℕ) |
61 | 60 | nnrpd 12483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑀 · 𝑁) ∈
ℝ+) |
62 | | elfzole1 13108 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑦) |
63 | 42, 62 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 0 ≤ 𝑦) |
64 | | elfzolt2 13109 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 < (𝑀 · 𝑁)) |
65 | 42, 64 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑦 < (𝑀 · 𝑁)) |
66 | | modid 13326 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤
𝑦 ∧ 𝑦 < (𝑀 · 𝑁))) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦) |
67 | 59, 61, 63, 65, 66 | syl22anc 837 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦) |
68 | 48 | zred 12139 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ ℝ) |
69 | | elfzole1 13108 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑧) |
70 | 46, 69 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 0 ≤ 𝑧) |
71 | | elfzolt2 13109 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 < (𝑀 · 𝑁)) |
72 | 46, 71 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 < (𝑀 · 𝑁)) |
73 | | modid 13326 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℝ ∧ (𝑀 · 𝑁) ∈ ℝ+) ∧ (0 ≤
𝑧 ∧ 𝑧 < (𝑀 · 𝑁))) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧) |
74 | 68, 61, 70, 72, 73 | syl22anc 837 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧) |
75 | 67, 74 | eqeq12d 2774 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ 𝑦 = 𝑧)) |
76 | | moddvds 15679 |
. . . . . . . 8
⊢ (((𝑀 · 𝑁) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
77 | 60, 44, 48, 76 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
78 | 75, 77 | bitr3d 284 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑦 = 𝑧 ↔ (𝑀 · 𝑁) ∥ (𝑦 − 𝑧))) |
79 | 53, 58, 78 | 3imtr4d 297 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) → 𝑦 = 𝑧)) |
80 | 36, 79 | sylbid 243 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
81 | 80 | ralrimivva 3120 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
82 | | dff13 7011 |
. . 3
⊢ (𝐹:𝑆–1-1→𝑇 ↔ (𝐹:𝑆⟶𝑇 ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
83 | 19, 81, 82 | sylanbrc 586 |
. 2
⊢ (𝜑 → 𝐹:𝑆–1-1→𝑇) |
84 | | nnnn0 11954 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
85 | | nnnn0 11954 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
86 | | nn0mulcl 11983 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 · 𝑁) ∈
ℕ0) |
87 | | hashfzo0 13854 |
. . . . . . . . 9
⊢ ((𝑀 · 𝑁) ∈ ℕ0 →
(♯‘(0..^(𝑀
· 𝑁))) = (𝑀 · 𝑁)) |
88 | 86, 87 | syl 17 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (♯‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁)) |
89 | | fzofi 13404 |
. . . . . . . . . 10
⊢
(0..^𝑀) ∈
Fin |
90 | | fzofi 13404 |
. . . . . . . . . 10
⊢
(0..^𝑁) ∈
Fin |
91 | | hashxp 13858 |
. . . . . . . . . 10
⊢
(((0..^𝑀) ∈ Fin
∧ (0..^𝑁) ∈ Fin)
→ (♯‘((0..^𝑀) × (0..^𝑁))) = ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁)))) |
92 | 89, 90, 91 | mp2an 691 |
. . . . . . . . 9
⊢
(♯‘((0..^𝑀) × (0..^𝑁))) = ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))) |
93 | | hashfzo0 13854 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ0
→ (♯‘(0..^𝑀)) = 𝑀) |
94 | | hashfzo0 13854 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0..^𝑁)) = 𝑁) |
95 | 93, 94 | oveqan12d 7175 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))) = (𝑀 · 𝑁)) |
96 | 92, 95 | syl5eq 2805 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (♯‘((0..^𝑀) × (0..^𝑁))) = (𝑀 · 𝑁)) |
97 | 88, 96 | eqtr4d 2796 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁)))) |
98 | | fzofi 13404 |
. . . . . . . 8
⊢
(0..^(𝑀 ·
𝑁)) ∈
Fin |
99 | | xpfi 8835 |
. . . . . . . . 9
⊢
(((0..^𝑀) ∈ Fin
∧ (0..^𝑁) ∈ Fin)
→ ((0..^𝑀) ×
(0..^𝑁)) ∈
Fin) |
100 | 89, 90, 99 | mp2an 691 |
. . . . . . . 8
⊢
((0..^𝑀) ×
(0..^𝑁)) ∈
Fin |
101 | | hashen 13770 |
. . . . . . . 8
⊢
(((0..^(𝑀 ·
𝑁)) ∈ Fin ∧
((0..^𝑀) × (0..^𝑁)) ∈ Fin) →
((♯‘(0..^(𝑀
· 𝑁))) =
(♯‘((0..^𝑀)
× (0..^𝑁))) ↔
(0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))) |
102 | 98, 100, 101 | mp2an 691 |
. . . . . . 7
⊢
((♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
103 | 97, 102 | sylib 221 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
104 | 84, 85, 103 | syl2an 598 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) →
(0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
105 | 6, 10, 104 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))) |
106 | 105, 2, 15 | 3brtr4g 5070 |
. . 3
⊢ (𝜑 → 𝑆 ≈ 𝑇) |
107 | 15, 100 | eqeltri 2848 |
. . 3
⊢ 𝑇 ∈ Fin |
108 | | f1finf1o 8795 |
. . 3
⊢ ((𝑆 ≈ 𝑇 ∧ 𝑇 ∈ Fin) → (𝐹:𝑆–1-1→𝑇 ↔ 𝐹:𝑆–1-1-onto→𝑇)) |
109 | 106, 107,
108 | sylancl 589 |
. 2
⊢ (𝜑 → (𝐹:𝑆–1-1→𝑇 ↔ 𝐹:𝑆–1-1-onto→𝑇)) |
110 | 83, 109 | mpbid 235 |
1
⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) |