![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimneg | Structured version Visualization version GIF version |
Description: Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
rlimneg.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rlimneg.2 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
Ref | Expression |
---|---|
rlimneg | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -𝐵) ⇝𝑟 -𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cnd 11245 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) | |
2 | rlimneg.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | rlimneg.2 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
4 | 2, 3 | rlimmptrcl 15592 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
5 | 2 | ralrimiva 3143 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑉) |
6 | dmmptg 6251 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
8 | rlimss 15486 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
9 | 3, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
10 | 7, 9 | eqsstrrd 4021 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
11 | 0cn 11244 | . . . 4 ⊢ 0 ∈ ℂ | |
12 | rlimconst 15528 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈ ℂ) → (𝑘 ∈ 𝐴 ↦ 0) ⇝𝑟 0) | |
13 | 10, 11, 12 | sylancl 584 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 0) ⇝𝑟 0) |
14 | 1, 4, 13, 3 | rlimsub 15629 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (0 − 𝐵)) ⇝𝑟 (0 − 𝐶)) |
15 | df-neg 11485 | . . 3 ⊢ -𝐵 = (0 − 𝐵) | |
16 | 15 | mpteq2i 5257 | . 2 ⊢ (𝑘 ∈ 𝐴 ↦ -𝐵) = (𝑘 ∈ 𝐴 ↦ (0 − 𝐵)) |
17 | df-neg 11485 | . 2 ⊢ -𝐶 = (0 − 𝐶) | |
18 | 14, 16, 17 | 3brtr4g 5186 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -𝐵) ⇝𝑟 -𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ⊆ wss 3949 class class class wbr 5152 ↦ cmpt 5235 dom cdm 5682 (class class class)co 7426 ℂcc 11144 ℝcr 11145 0cc0 11146 − cmin 11482 -cneg 11483 ⇝𝑟 crli 15469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-rlim 15473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |