MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmateALT Structured version   Visualization version   GIF version

Theorem scmateALT 22406
Description: Alternate proof of scmate 22404: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 22405 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
scmate.k 𝐾 = (Base‘𝑅)
scmate.0 0 = (0g𝑅)
Assertion
Ref Expression
scmateALT (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑅,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝑆,𝑐   𝐵,𝑐
Allowed substitution hints:   𝐴(𝑐)   0 (𝑐)

Proof of Theorem scmateALT
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 scmatmat.b . . . . . 6 𝐵 = (Base‘𝐴)
3 scmatmat.s . . . . . 6 𝑆 = (𝑁 ScMat 𝑅)
4 scmate.k . . . . . 6 𝐾 = (Base‘𝑅)
5 scmate.0 . . . . . 6 0 = (0g𝑅)
61, 2, 3, 4, 5scmatmats 22405 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )})
76eleq2d 2815 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}))
8 oveq 7396 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2732 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1092ralbidv 3202 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1110rexbidv 3158 . . . . . 6 (𝑚 = 𝑀 → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1211elrab 3662 . . . . 5 (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ↔ (𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
13 oveq1 7397 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗))
14 eqeq1 2734 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝐼 = 𝑗))
1514ifbid 4515 . . . . . . . . . . 11 (𝑖 = 𝐼 → if(𝑖 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝑗, 𝑐, 0 ))
1613, 15eqeq12d 2746 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 )))
17 oveq2 7398 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽))
18 eqeq2 2742 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼 = 𝑗𝐼 = 𝐽))
1918ifbid 4515 . . . . . . . . . . 11 (𝑗 = 𝐽 → if(𝐼 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝐽, 𝑐, 0 ))
2017, 19eqeq12d 2746 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2116, 20rspc2v 3602 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2221reximdv 3149 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2322com12 32 . . . . . . 7 (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2423adantl 481 . . . . . 6 ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2524a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2612, 25biimtrid 242 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
277, 26sylbid 240 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2827ex 412 . 2 (𝑁 ∈ Fin → (𝑅 ∈ Ring → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))))
29283imp1 1348 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  ifcif 4491  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  0gc0g 17409  Ringcrg 20149   Mat cmat 22301   ScMat cscmat 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302  df-scmat 22385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator