MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmateALT Structured version   Visualization version   GIF version

Theorem scmateALT 21113
Description: Alternate proof of scmate 21111: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 21112 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
scmate.k 𝐾 = (Base‘𝑅)
scmate.0 0 = (0g𝑅)
Assertion
Ref Expression
scmateALT (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑅,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝑆,𝑐   𝐵,𝑐
Allowed substitution hints:   𝐴(𝑐)   0 (𝑐)

Proof of Theorem scmateALT
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 scmatmat.b . . . . . 6 𝐵 = (Base‘𝐴)
3 scmatmat.s . . . . . 6 𝑆 = (𝑁 ScMat 𝑅)
4 scmate.k . . . . . 6 𝐾 = (Base‘𝑅)
5 scmate.0 . . . . . 6 0 = (0g𝑅)
61, 2, 3, 4, 5scmatmats 21112 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )})
76eleq2d 2896 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}))
8 oveq 7154 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2821 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1092ralbidv 3197 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1110rexbidv 3295 . . . . . 6 (𝑚 = 𝑀 → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1211elrab 3678 . . . . 5 (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ↔ (𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
13 oveq1 7155 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗))
14 eqeq1 2823 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝐼 = 𝑗))
1514ifbid 4487 . . . . . . . . . . 11 (𝑖 = 𝐼 → if(𝑖 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝑗, 𝑐, 0 ))
1613, 15eqeq12d 2835 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 )))
17 oveq2 7156 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽))
18 eqeq2 2831 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼 = 𝑗𝐼 = 𝐽))
1918ifbid 4487 . . . . . . . . . . 11 (𝑗 = 𝐽 → if(𝐼 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝐽, 𝑐, 0 ))
2017, 19eqeq12d 2835 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2116, 20rspc2v 3631 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2221reximdv 3271 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2322com12 32 . . . . . . 7 (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2423adantl 484 . . . . . 6 ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2524a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2612, 25syl5bi 244 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
277, 26sylbid 242 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2827ex 415 . 2 (𝑁 ∈ Fin → (𝑅 ∈ Ring → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))))
29283imp1 1342 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137  {crab 3140  ifcif 4465  cfv 6348  (class class class)co 7148  Fincfn 8501  Basecbs 16475  0gc0g 16705  Ringcrg 19289   Mat cmat 21008   ScMat cscmat 21090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-subrg 19525  df-lmod 19628  df-lss 19696  df-sra 19936  df-rgmod 19937  df-dsmm 20868  df-frlm 20883  df-mamu 20987  df-mat 21009  df-scmat 21092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator