MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmateALT Structured version   Visualization version   GIF version

Theorem scmateALT 22465
Description: Alternate proof of scmate 22463: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 22464 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
scmate.k 𝐾 = (Base‘𝑅)
scmate.0 0 = (0g𝑅)
Assertion
Ref Expression
scmateALT (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑅,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝑆,𝑐   𝐵,𝑐
Allowed substitution hints:   𝐴(𝑐)   0 (𝑐)

Proof of Theorem scmateALT
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 scmatmat.b . . . . . 6 𝐵 = (Base‘𝐴)
3 scmatmat.s . . . . . 6 𝑆 = (𝑁 ScMat 𝑅)
4 scmate.k . . . . . 6 𝐾 = (Base‘𝑅)
5 scmate.0 . . . . . 6 0 = (0g𝑅)
61, 2, 3, 4, 5scmatmats 22464 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )})
76eleq2d 2819 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}))
8 oveq 7418 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2736 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1092ralbidv 3208 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1110rexbidv 3166 . . . . . 6 (𝑚 = 𝑀 → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1211elrab 3675 . . . . 5 (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ↔ (𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
13 oveq1 7419 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗))
14 eqeq1 2738 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝐼 = 𝑗))
1514ifbid 4529 . . . . . . . . . . 11 (𝑖 = 𝐼 → if(𝑖 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝑗, 𝑐, 0 ))
1613, 15eqeq12d 2750 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 )))
17 oveq2 7420 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽))
18 eqeq2 2746 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼 = 𝑗𝐼 = 𝐽))
1918ifbid 4529 . . . . . . . . . . 11 (𝑗 = 𝐽 → if(𝐼 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝐽, 𝑐, 0 ))
2017, 19eqeq12d 2750 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2116, 20rspc2v 3616 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2221reximdv 3157 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2322com12 32 . . . . . . 7 (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2423adantl 481 . . . . . 6 ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2524a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2612, 25biimtrid 242 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
277, 26sylbid 240 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2827ex 412 . 2 (𝑁 ∈ Fin → (𝑅 ∈ Ring → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))))
29283imp1 1347 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3419  ifcif 4505  cfv 6540  (class class class)co 7412  Fincfn 8966  Basecbs 17228  0gc0g 17454  Ringcrg 20197   Mat cmat 22358   ScMat cscmat 22442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-dec 12716  df-uz 12860  df-fz 13529  df-fzo 13676  df-seq 14024  df-hash 14351  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ds 17294  df-hom 17296  df-cco 17297  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-submnd 18765  df-grp 18922  df-minusg 18923  df-sbg 18924  df-mulg 19054  df-subg 19109  df-ghm 19199  df-cntz 19303  df-cmn 19767  df-abl 19768  df-mgp 20105  df-rng 20117  df-ur 20146  df-ring 20199  df-subrg 20537  df-lmod 20827  df-lss 20897  df-sra 21139  df-rgmod 21140  df-dsmm 21705  df-frlm 21720  df-mamu 22342  df-mat 22359  df-scmat 22444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator