| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmateALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of scmate 22463: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 22464 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
| scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
| scmate.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmate.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| scmateALT | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatmat.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | scmatmat.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | scmatmat.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
| 4 | scmate.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | scmate.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | scmatmats 22464 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}) |
| 7 | 6 | eleq2d 2819 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )})) |
| 8 | oveq 7418 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
| 9 | 8 | eqeq1d 2736 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
| 10 | 9 | 2ralbidv 3208 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
| 11 | 10 | rexbidv 3166 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
| 12 | 11 | elrab 3675 | . . . . 5 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ))) |
| 13 | oveq1 7419 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗)) | |
| 14 | eqeq1 2738 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → (𝑖 = 𝑗 ↔ 𝐼 = 𝑗)) | |
| 15 | 14 | ifbid 4529 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝐼 → if(𝑖 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝑗, 𝑐, 0 )) |
| 16 | 13, 15 | eqeq12d 2750 | . . . . . . . . . 10 ⊢ (𝑖 = 𝐼 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 ))) |
| 17 | oveq2 7420 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽)) | |
| 18 | eqeq2 2746 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝐽 → (𝐼 = 𝑗 ↔ 𝐼 = 𝐽)) | |
| 19 | 18 | ifbid 4529 | . . . . . . . . . . 11 ⊢ (𝑗 = 𝐽 → if(𝐼 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝐽, 𝑐, 0 )) |
| 20 | 17, 19 | eqeq12d 2750 | . . . . . . . . . 10 ⊢ (𝑗 = 𝐽 → ((𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
| 21 | 16, 20 | rspc2v 3616 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
| 22 | 21 | reximdv 3157 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
| 23 | 22 | com12 32 | . . . . . . 7 ⊢ (∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
| 24 | 23 | adantl 481 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))) |
| 26 | 12, 25 | biimtrid 242 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))) |
| 27 | 7, 26 | sylbid 240 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))) |
| 28 | 27 | ex 412 | . 2 ⊢ (𝑁 ∈ Fin → (𝑅 ∈ Ring → (𝑀 ∈ 𝑆 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))) |
| 29 | 28 | 3imp1 1347 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3419 ifcif 4505 ‘cfv 6540 (class class class)co 7412 Fincfn 8966 Basecbs 17228 0gc0g 17454 Ringcrg 20197 Mat cmat 22358 ScMat cscmat 22442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-fzo 13676 df-seq 14024 df-hash 14351 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-ghm 19199 df-cntz 19303 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-ring 20199 df-subrg 20537 df-lmod 20827 df-lss 20897 df-sra 21139 df-rgmod 21140 df-dsmm 21705 df-frlm 21720 df-mamu 22342 df-mat 22359 df-scmat 22444 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |