MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmateALT Structured version   Visualization version   GIF version

Theorem scmateALT 22415
Description: Alternate proof of scmate 22413: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. This prove makes use of scmatmats 22414 but is longer and requires more distinct variables. (Contributed by AV, 19-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
scmate.k 𝐾 = (Base‘𝑅)
scmate.0 0 = (0g𝑅)
Assertion
Ref Expression
scmateALT (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑅,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝑆,𝑐   𝐵,𝑐
Allowed substitution hints:   𝐴(𝑐)   0 (𝑐)

Proof of Theorem scmateALT
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 scmatmat.b . . . . . 6 𝐵 = (Base‘𝐴)
3 scmatmat.s . . . . . 6 𝑆 = (𝑁 ScMat 𝑅)
4 scmate.k . . . . . 6 𝐾 = (Base‘𝑅)
5 scmate.0 . . . . . 6 0 = (0g𝑅)
61, 2, 3, 4, 5scmatmats 22414 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )})
76eleq2d 2814 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )}))
8 oveq 7359 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2731 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1092ralbidv 3193 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1110rexbidv 3153 . . . . . 6 (𝑚 = 𝑀 → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
1211elrab 3650 . . . . 5 (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} ↔ (𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )))
13 oveq1 7360 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗))
14 eqeq1 2733 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝐼 = 𝑗))
1514ifbid 4502 . . . . . . . . . . 11 (𝑖 = 𝐼 → if(𝑖 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝑗, 𝑐, 0 ))
1613, 15eqeq12d 2745 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 )))
17 oveq2 7361 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽))
18 eqeq2 2741 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝐼 = 𝑗𝐼 = 𝐽))
1918ifbid 4502 . . . . . . . . . . 11 (𝑗 = 𝐽 → if(𝐼 = 𝑗, 𝑐, 0 ) = if(𝐼 = 𝐽, 𝑐, 0 ))
2017, 19eqeq12d 2745 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝐼𝑀𝑗) = if(𝐼 = 𝑗, 𝑐, 0 ) ↔ (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2116, 20rspc2v 3590 . . . . . . . . 9 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2221reximdv 3144 . . . . . . . 8 ((𝐼𝑁𝐽𝑁) → (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2322com12 32 . . . . . . 7 (∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 ) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2423adantl 481 . . . . . 6 ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2524a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀𝐵 ∧ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2612, 25biimtrid 242 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, 0 )} → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
277, 26sylbid 240 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
2827ex 412 . 2 (𝑁 ∈ Fin → (𝑅 ∈ Ring → (𝑀𝑆 → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))))
29283imp1 1348 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  ifcif 4478  cfv 6486  (class class class)co 7353  Fincfn 8879  Basecbs 17138  0gc0g 17361  Ringcrg 20136   Mat cmat 22310   ScMat cscmat 22392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-mamu 22294  df-mat 22311  df-scmat 22394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator