Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matecl | Structured version Visualization version GIF version |
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
Ref | Expression |
---|---|
matecl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matecl.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
matecl | ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matecl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21469 | . . 3 ⊢ (𝑀 ∈ (Base‘𝐴) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | 3ad2ant3 1133 | . 2 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | matecl.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑅) | |
6 | 1, 5 | matbas2 21478 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
7 | 6 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (𝐾 ↑m (𝑁 × 𝑁))) |
8 | 7 | eleq2d 2824 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)))) |
9 | 5 | fvexi 6770 | . . . . . . . . 9 ⊢ 𝐾 ∈ V |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ V → 𝐾 ∈ V) |
11 | sqxpexg 7583 | . . . . . . . 8 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
12 | elmapg 8586 | . . . . . . . 8 ⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) | |
13 | 10, 11, 12 | syl2anr 596 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) |
14 | ffnov 7379 | . . . . . . . 8 ⊢ (𝑀:(𝑁 × 𝑁)⟶𝐾 ↔ (𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾)) | |
15 | oveq1 7262 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗)) | |
16 | 15 | eleq1d 2823 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → ((𝑖𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝑗) ∈ 𝐾)) |
17 | oveq2 7263 | . . . . . . . . . . . . 13 ⊢ (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽)) | |
18 | 17 | eleq1d 2823 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝐽 → ((𝐼𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝐽) ∈ 𝐾)) |
19 | 16, 18 | rspc2v 3562 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → (𝐼𝑀𝐽) ∈ 𝐾)) |
20 | 19 | com12 32 | . . . . . . . . . 10 ⊢ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
23 | 14, 22 | syl5bi 241 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀:(𝑁 × 𝑁)⟶𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
24 | 13, 23 | sylbid 239 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
25 | 8, 24 | sylbid 239 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
26 | 25 | com13 88 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾))) |
27 | 26 | ex 412 | . . 3 ⊢ (𝐼 ∈ 𝑁 → (𝐽 ∈ 𝑁 → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾)))) |
28 | 27 | 3imp1 1345 | . 2 ⊢ (((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) → (𝐼𝑀𝐽) ∈ 𝐾) |
29 | 4, 28 | mpdan 683 | 1 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 Basecbs 16840 Mat cmat 21464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mat 21465 |
This theorem is referenced by: matecld 21483 matinvgcell 21492 matepmcl 21519 matepm2cl 21520 dmatmul 21554 marrepcl 21621 marepvcl 21626 mulmarep1el 21629 mulmarep1gsum1 21630 submabas 21635 m1detdiag 21654 mdetdiag 21656 m2detleib 21688 marep01ma 21717 smadiadetlem4 21726 mat2pmatbas 21783 decpmatmul 21829 pm2mpghm 21873 chpscmat 21899 chpscmatgsumbin 21901 chpscmatgsummon 21902 mdetlap1 31678 |
Copyright terms: Public domain | W3C validator |