MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matecl Structured version   Visualization version   GIF version

Theorem matecl 21574
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.)
Hypotheses
Ref Expression
matecl.a 𝐴 = (𝑁 Mat 𝑅)
matecl.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
matecl ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾)

Proof of Theorem matecl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matecl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2738 . . . 4 (Base‘𝐴) = (Base‘𝐴)
31, 2matrcl 21559 . . 3 (𝑀 ∈ (Base‘𝐴) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
433ad2ant3 1134 . 2 ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 matecl.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
61, 5matbas2 21570 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾m (𝑁 × 𝑁)) = (Base‘𝐴))
76eqcomd 2744 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (𝐾m (𝑁 × 𝑁)))
87eleq2d 2824 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐾m (𝑁 × 𝑁))))
95fvexi 6788 . . . . . . . . 9 𝐾 ∈ V
109a1i 11 . . . . . . . 8 (𝑅 ∈ V → 𝐾 ∈ V)
11 sqxpexg 7605 . . . . . . . 8 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V)
12 elmapg 8628 . . . . . . . 8 ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → (𝑀 ∈ (𝐾m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾))
1310, 11, 12syl2anr 597 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾))
14 ffnov 7401 . . . . . . . 8 (𝑀:(𝑁 × 𝑁)⟶𝐾 ↔ (𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾))
15 oveq1 7282 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗))
1615eleq1d 2823 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑖𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝑗) ∈ 𝐾))
17 oveq2 7283 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽))
1817eleq1d 2823 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ((𝐼𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝐽) ∈ 𝐾))
1916, 18rspc2v 3570 . . . . . . . . . . 11 ((𝐼𝑁𝐽𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → (𝐼𝑀𝐽) ∈ 𝐾))
2019com12 32 . . . . . . . . . 10 (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))
2120adantl 482 . . . . . . . . 9 ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))
2221a1i 11 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
2314, 22syl5bi 241 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀:(𝑁 × 𝑁)⟶𝐾 → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
2413, 23sylbid 239 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾m (𝑁 × 𝑁)) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
258, 24sylbid 239 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) → ((𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)))
2625com13 88 . . . 4 ((𝐼𝑁𝐽𝑁) → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾)))
2726ex 413 . . 3 (𝐼𝑁 → (𝐽𝑁 → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾))))
28273imp1 1346 . 2 (((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) → (𝐼𝑀𝐽) ∈ 𝐾)
294, 28mpdan 684 1 ((𝐼𝑁𝐽𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  Basecbs 16912   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-mat 21555
This theorem is referenced by:  matecld  21575  matinvgcell  21584  matepmcl  21611  matepm2cl  21612  dmatmul  21646  marrepcl  21713  marepvcl  21718  mulmarep1el  21721  mulmarep1gsum1  21722  submabas  21727  m1detdiag  21746  mdetdiag  21748  m2detleib  21780  marep01ma  21809  smadiadetlem4  21818  mat2pmatbas  21875  decpmatmul  21921  pm2mpghm  21965  chpscmat  21991  chpscmatgsumbin  21993  chpscmatgsummon  21994  mdetlap1  31776
  Copyright terms: Public domain W3C validator