![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matecl | Structured version Visualization version GIF version |
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
Ref | Expression |
---|---|
matecl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matecl.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
matecl | ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matecl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2736 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21759 | . . 3 ⊢ (𝑀 ∈ (Base‘𝐴) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | matecl.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑅) | |
6 | 1, 5 | matbas2 21770 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
7 | 6 | eqcomd 2742 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (𝐾 ↑m (𝑁 × 𝑁))) |
8 | 7 | eleq2d 2823 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)))) |
9 | 5 | fvexi 6856 | . . . . . . . . 9 ⊢ 𝐾 ∈ V |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ V → 𝐾 ∈ V) |
11 | sqxpexg 7689 | . . . . . . . 8 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
12 | elmapg 8778 | . . . . . . . 8 ⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) | |
13 | 10, 11, 12 | syl2anr 597 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) |
14 | ffnov 7483 | . . . . . . . 8 ⊢ (𝑀:(𝑁 × 𝑁)⟶𝐾 ↔ (𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾)) | |
15 | oveq1 7364 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗)) | |
16 | 15 | eleq1d 2822 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → ((𝑖𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝑗) ∈ 𝐾)) |
17 | oveq2 7365 | . . . . . . . . . . . . 13 ⊢ (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽)) | |
18 | 17 | eleq1d 2822 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝐽 → ((𝐼𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝐽) ∈ 𝐾)) |
19 | 16, 18 | rspc2v 3590 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → (𝐼𝑀𝐽) ∈ 𝐾)) |
20 | 19 | com12 32 | . . . . . . . . . 10 ⊢ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
21 | 20 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
23 | 14, 22 | biimtrid 241 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀:(𝑁 × 𝑁)⟶𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
24 | 13, 23 | sylbid 239 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
25 | 8, 24 | sylbid 239 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
26 | 25 | com13 88 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾))) |
27 | 26 | ex 413 | . . 3 ⊢ (𝐼 ∈ 𝑁 → (𝐽 ∈ 𝑁 → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾)))) |
28 | 27 | 3imp1 1347 | . 2 ⊢ (((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) → (𝐼𝑀𝐽) ∈ 𝐾) |
29 | 4, 28 | mpdan 685 | 1 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 × cxp 5631 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Fincfn 8883 Basecbs 17083 Mat cmat 21754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-mat 21755 |
This theorem is referenced by: matecld 21775 matinvgcell 21784 matepmcl 21811 matepm2cl 21812 dmatmul 21846 marrepcl 21913 marepvcl 21918 mulmarep1el 21921 mulmarep1gsum1 21922 submabas 21927 m1detdiag 21946 mdetdiag 21948 m2detleib 21980 marep01ma 22009 smadiadetlem4 22018 mat2pmatbas 22075 decpmatmul 22121 pm2mpghm 22165 chpscmat 22191 chpscmatgsumbin 22193 chpscmatgsummon 22194 mdetlap1 32407 |
Copyright terms: Public domain | W3C validator |