| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matecl | Structured version Visualization version GIF version | ||
| Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
| Ref | Expression |
|---|---|
| matecl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matecl.k | ⊢ 𝐾 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| matecl | ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matecl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22299 | . . 3 ⊢ (𝑀 ∈ (Base‘𝐴) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 5 | matecl.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑅) | |
| 6 | 1, 5 | matbas2 22308 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 7 | 6 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (𝐾 ↑m (𝑁 × 𝑁))) |
| 8 | 7 | eleq2d 2814 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)))) |
| 9 | 5 | fvexi 6872 | . . . . . . . . 9 ⊢ 𝐾 ∈ V |
| 10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ V → 𝐾 ∈ V) |
| 11 | sqxpexg 7731 | . . . . . . . 8 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
| 12 | elmapg 8812 | . . . . . . . 8 ⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) |
| 14 | ffnov 7515 | . . . . . . . 8 ⊢ (𝑀:(𝑁 × 𝑁)⟶𝐾 ↔ (𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾)) | |
| 15 | oveq1 7394 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗)) | |
| 16 | 15 | eleq1d 2813 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → ((𝑖𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝑗) ∈ 𝐾)) |
| 17 | oveq2 7395 | . . . . . . . . . . . . 13 ⊢ (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽)) | |
| 18 | 17 | eleq1d 2813 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝐽 → ((𝐼𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝐽) ∈ 𝐾)) |
| 19 | 16, 18 | rspc2v 3599 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → (𝐼𝑀𝐽) ∈ 𝐾)) |
| 20 | 19 | com12 32 | . . . . . . . . . 10 ⊢ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
| 21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
| 22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
| 23 | 14, 22 | biimtrid 242 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀:(𝑁 × 𝑁)⟶𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
| 24 | 13, 23 | sylbid 240 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
| 25 | 8, 24 | sylbid 240 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
| 26 | 25 | com13 88 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾))) |
| 27 | 26 | ex 412 | . . 3 ⊢ (𝐼 ∈ 𝑁 → (𝐽 ∈ 𝑁 → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾)))) |
| 28 | 27 | 3imp1 1348 | . 2 ⊢ (((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) → (𝐼𝑀𝐽) ∈ 𝐾) |
| 29 | 4, 28 | mpdan 687 | 1 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 × cxp 5636 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 Basecbs 17179 Mat cmat 22294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-mat 22295 |
| This theorem is referenced by: matecld 22313 matinvgcell 22322 matepmcl 22349 matepm2cl 22350 dmatmul 22384 marrepcl 22451 marepvcl 22456 mulmarep1el 22459 mulmarep1gsum1 22460 submabas 22465 m1detdiag 22484 mdetdiag 22486 m2detleib 22518 marep01ma 22547 smadiadetlem4 22556 mat2pmatbas 22613 decpmatmul 22659 pm2mpghm 22703 chpscmat 22729 chpscmatgsumbin 22731 chpscmatgsummon 22732 mdetlap1 33816 |
| Copyright terms: Public domain | W3C validator |