MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlmcl Structured version   Visualization version   GIF version

Theorem rnglidlmcl 21249
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl 21258. (Contributed by AV, 18-Feb-2025.)
Hypotheses
Ref Expression
rnglidlmcl.z 0 = (0g𝑅)
rnglidlmcl.b 𝐵 = (Base‘𝑅)
rnglidlmcl.t · = (.r𝑅)
rnglidlmcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
rnglidlmcl (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem rnglidlmcl
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlmcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
2 rnglidlmcl.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2740 . . . 4 (+g𝑅) = (+g𝑅)
4 rnglidlmcl.t . . . 4 · = (.r𝑅)
51, 2, 3, 4islidl 21248 . . 3 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
6 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 · 𝑎) = (𝑋 · 𝑎))
76oveq1d 7463 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑎)(+g𝑅)𝑏))
87eleq1d 2829 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
98ralbidv 3184 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (∀𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
10 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑎 = 𝑌 → (𝑋 · 𝑎) = (𝑋 · 𝑌))
1110oveq1d 7463 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → ((𝑋 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅)𝑏))
1211eleq1d 2829 . . . . . . . . . . . . 13 (𝑎 = 𝑌 → (((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1312ralbidv 3184 . . . . . . . . . . . 12 (𝑎 = 𝑌 → (∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
149, 13rspc2v 3646 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1514adantl 481 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
16 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑏 = 0 → ((𝑋 · 𝑌)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅) 0 ))
1716eleq1d 2829 . . . . . . . . . . . . . 14 (𝑏 = 0 → (((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1817rspcv 3631 . . . . . . . . . . . . 13 ( 0𝐼 → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1918adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
20 rnglidlmcl.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
21 rnggrp 20185 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
22213ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → 𝑅 ∈ Grp)
2322adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → 𝑅 ∈ Grp)
2423adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Grp)
25 simpll1 1212 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Rng)
26 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑋𝐵)
27 ssel 4002 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝐵 → (𝑌𝐼𝑌𝐵))
28273ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → (𝑌𝐼𝑌𝐵))
2928adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (𝑌𝐼𝑌𝐵))
3029adantld 490 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → 𝑌𝐵))
3130imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐵)
322, 4rngcl 20191 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3325, 26, 31, 32syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐵)
342, 3, 20, 24, 33grpridd 19010 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → ((𝑋 · 𝑌)(+g𝑅) 0 ) = (𝑋 · 𝑌))
3534eleq1d 2829 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 ↔ (𝑋 · 𝑌) ∈ 𝐼))
3635biimpd 229 . . . . . . . . . . . . 13 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3736ex 412 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3819, 37syl5d 73 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3938imp 406 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
4015, 39syld 47 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
4140ex 412 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
4241com23 86 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)))
4342ex 412 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → ( 0𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
4443com23 86 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
45443exp 1119 . . . 4 (𝑅 ∈ Rng → (𝐼𝐵 → (𝐼 ≠ ∅ → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))))
46453impd 1348 . . 3 (𝑅 ∈ Rng → ((𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼) → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
475, 46biimtrid 242 . 2 (𝑅 ∈ Rng → (𝐼𝑈 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
48473imp1 1347 1 (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  Rngcrng 20179  LIdealclidl 21239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-abl 19825  df-mgp 20162  df-rng 20180  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241
This theorem is referenced by:  rngridlmcl  21250  dflidl2rng  21251  lidlmcl  21258  rnglidlmmgm  21278  2idlcpblrng  21304  rng2idl1cntr  21338
  Copyright terms: Public domain W3C validator