MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlmcl Structured version   Visualization version   GIF version

Theorem rnglidlmcl 21182
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl 21191. (Contributed by AV, 18-Feb-2025.)
Hypotheses
Ref Expression
rnglidlmcl.z 0 = (0g𝑅)
rnglidlmcl.b 𝐵 = (Base‘𝑅)
rnglidlmcl.t · = (.r𝑅)
rnglidlmcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
rnglidlmcl (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem rnglidlmcl
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlmcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
2 rnglidlmcl.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . 4 (+g𝑅) = (+g𝑅)
4 rnglidlmcl.t . . . 4 · = (.r𝑅)
51, 2, 3, 4islidl 21181 . . 3 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
6 oveq1 7417 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 · 𝑎) = (𝑋 · 𝑎))
76oveq1d 7425 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑎)(+g𝑅)𝑏))
87eleq1d 2820 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
98ralbidv 3164 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (∀𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
10 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑎 = 𝑌 → (𝑋 · 𝑎) = (𝑋 · 𝑌))
1110oveq1d 7425 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → ((𝑋 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅)𝑏))
1211eleq1d 2820 . . . . . . . . . . . . 13 (𝑎 = 𝑌 → (((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1312ralbidv 3164 . . . . . . . . . . . 12 (𝑎 = 𝑌 → (∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
149, 13rspc2v 3617 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1514adantl 481 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
16 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑏 = 0 → ((𝑋 · 𝑌)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅) 0 ))
1716eleq1d 2820 . . . . . . . . . . . . . 14 (𝑏 = 0 → (((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1817rspcv 3602 . . . . . . . . . . . . 13 ( 0𝐼 → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1918adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
20 rnglidlmcl.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
21 rnggrp 20123 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
22213ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → 𝑅 ∈ Grp)
2322adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → 𝑅 ∈ Grp)
2423adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Grp)
25 simpll1 1213 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Rng)
26 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑋𝐵)
27 ssel 3957 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝐵 → (𝑌𝐼𝑌𝐵))
28273ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → (𝑌𝐼𝑌𝐵))
2928adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (𝑌𝐼𝑌𝐵))
3029adantld 490 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → 𝑌𝐵))
3130imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐵)
322, 4rngcl 20129 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3325, 26, 31, 32syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐵)
342, 3, 20, 24, 33grpridd 18958 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → ((𝑋 · 𝑌)(+g𝑅) 0 ) = (𝑋 · 𝑌))
3534eleq1d 2820 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 ↔ (𝑋 · 𝑌) ∈ 𝐼))
3635biimpd 229 . . . . . . . . . . . . 13 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3736ex 412 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3819, 37syl5d 73 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3938imp 406 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
4015, 39syld 47 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
4140ex 412 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
4241com23 86 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)))
4342ex 412 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → ( 0𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
4443com23 86 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
45443exp 1119 . . . 4 (𝑅 ∈ Rng → (𝐼𝐵 → (𝐼 ≠ ∅ → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))))
46453impd 1349 . . 3 (𝑅 ∈ Rng → ((𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼) → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
475, 46biimtrid 242 . 2 (𝑅 ∈ Rng → (𝐼𝑈 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
48473imp1 1348 1 (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wss 3931  c0 4313  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921  Rngcrng 20117  LIdealclidl 21172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-abl 19769  df-mgp 20106  df-rng 20118  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174
This theorem is referenced by:  rngridlmcl  21183  dflidl2rng  21184  lidlmcl  21191  rnglidlmmgm  21211  2idlcpblrng  21237  rng2idl1cntr  21271
  Copyright terms: Public domain W3C validator