MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlmcl Structured version   Visualization version   GIF version

Theorem rnglidlmcl 21060
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl 21069. (Contributed by AV, 18-Feb-2025.)
Hypotheses
Ref Expression
rnglidlmcl.z 0 = (0g𝑅)
rnglidlmcl.b 𝐵 = (Base‘𝑅)
rnglidlmcl.t · = (.r𝑅)
rnglidlmcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
rnglidlmcl (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem rnglidlmcl
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlmcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
2 rnglidlmcl.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2724 . . . 4 (+g𝑅) = (+g𝑅)
4 rnglidlmcl.t . . . 4 · = (.r𝑅)
51, 2, 3, 4islidl 21059 . . 3 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
6 oveq1 7408 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 · 𝑎) = (𝑋 · 𝑎))
76oveq1d 7416 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑎)(+g𝑅)𝑏))
87eleq1d 2810 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
98ralbidv 3169 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (∀𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
10 oveq2 7409 . . . . . . . . . . . . . . 15 (𝑎 = 𝑌 → (𝑋 · 𝑎) = (𝑋 · 𝑌))
1110oveq1d 7416 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → ((𝑋 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅)𝑏))
1211eleq1d 2810 . . . . . . . . . . . . 13 (𝑎 = 𝑌 → (((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1312ralbidv 3169 . . . . . . . . . . . 12 (𝑎 = 𝑌 → (∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
149, 13rspc2v 3614 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1514adantl 481 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
16 oveq2 7409 . . . . . . . . . . . . . . 15 (𝑏 = 0 → ((𝑋 · 𝑌)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅) 0 ))
1716eleq1d 2810 . . . . . . . . . . . . . 14 (𝑏 = 0 → (((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1817rspcv 3600 . . . . . . . . . . . . 13 ( 0𝐼 → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1918adantl 481 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
20 rnglidlmcl.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
21 rnggrp 20048 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
22213ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → 𝑅 ∈ Grp)
2322adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → 𝑅 ∈ Grp)
2423adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Grp)
25 simpll1 1209 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Rng)
26 simprl 768 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑋𝐵)
27 ssel 3967 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝐵 → (𝑌𝐼𝑌𝐵))
28273ad2ant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → (𝑌𝐼𝑌𝐵))
2928adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (𝑌𝐼𝑌𝐵))
3029adantld 490 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → 𝑌𝐵))
3130imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐵)
322, 4rngcl 20054 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3325, 26, 31, 32syl3anc 1368 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐵)
342, 3, 20, 24, 33grpridd 18887 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → ((𝑋 · 𝑌)(+g𝑅) 0 ) = (𝑋 · 𝑌))
3534eleq1d 2810 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 ↔ (𝑋 · 𝑌) ∈ 𝐼))
3635biimpd 228 . . . . . . . . . . . . 13 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3736ex 412 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3819, 37syl5d 73 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3938imp 406 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
4015, 39syld 47 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
4140ex 412 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
4241com23 86 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) ∧ 0𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)))
4342ex 412 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → ( 0𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
4443com23 86 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼𝐵𝐼 ≠ ∅) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
45443exp 1116 . . . 4 (𝑅 ∈ Rng → (𝐼𝐵 → (𝐼 ≠ ∅ → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))))
46453impd 1345 . . 3 (𝑅 ∈ Rng → ((𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼) → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
475, 46biimtrid 241 . 2 (𝑅 ∈ Rng → (𝐼𝑈 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
48473imp1 1344 1 (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  wss 3940  c0 4314  cfv 6533  (class class class)co 7401  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  0gc0g 17381  Grpcgrp 18850  Rngcrng 20042  LIdealclidl 21050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-grp 18853  df-abl 19688  df-mgp 20025  df-rng 20043  df-lss 20764  df-sra 21006  df-rgmod 21007  df-lidl 21052
This theorem is referenced by:  rngridlmcl  21061  dflidl2rng  21062  lidlmcl  21069  rnglidlmmgm  21088  2idlcpblrng  21113  rng2idl1cntr  21143
  Copyright terms: Public domain W3C validator