![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexp2 | Structured version Visualization version GIF version |
Description: Strict ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
ltexp2 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7432 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
2 | oveq2 7432 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝐴↑𝑥) = (𝐴↑𝑀)) | |
3 | oveq2 7432 | . . . . . 6 ⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) | |
4 | zssre 12617 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
5 | simpl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
6 | 0red 11267 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
7 | 1red 11265 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
8 | 0lt1 11786 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1) |
10 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴) | |
11 | 6, 7, 5, 9, 10 | lttrd 11425 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴) |
12 | 5, 11 | elrpd 13067 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+) |
13 | rpexpcl 14100 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) | |
14 | 12, 13 | sylan 578 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) |
15 | 14 | rpred 13070 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ) |
16 | simpll 765 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ) | |
17 | simprl 769 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
18 | simprr 771 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
19 | simplr 767 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴) | |
20 | ltexp2a 14185 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑥 < 𝑦)) → (𝐴↑𝑥) < (𝐴↑𝑦)) | |
21 | 20 | expr 455 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
22 | 16, 17, 18, 19, 21 | syl31anc 1370 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
23 | 1, 2, 3, 4, 15, 22 | ltord1 11790 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
24 | 23 | ancom2s 648 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
25 | 24 | exp43 435 | . . 3 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁)))))) |
26 | 25 | com24 95 | . 2 ⊢ (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁)))))) |
27 | 26 | 3imp1 1344 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2099 class class class wbr 5153 (class class class)co 7424 ℝcr 11157 0cc0 11158 1c1 11159 < clt 11298 ℤcz 12610 ℝ+crp 13028 ↑cexp 14081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-seq 14022 df-exp 14082 |
This theorem is referenced by: leexp2 14190 ltexp2r 14192 ltexp2d 14268 |
Copyright terms: Public domain | W3C validator |