MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexp2 Structured version   Visualization version   GIF version

Theorem ltexp2 13388
Description: Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem ltexp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7031 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
2 oveq2 7031 . . . . . 6 (𝑥 = 𝑀 → (𝐴𝑥) = (𝐴𝑀))
3 oveq2 7031 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
4 zssre 11842 . . . . . 6 ℤ ⊆ ℝ
5 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
6 0red 10497 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
7 1red 10495 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
8 0lt1 11016 . . . . . . . . . . 11 0 < 1
98a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
10 simpr 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
116, 7, 5, 9, 10lttrd 10654 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
125, 11elrpd 12282 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
13 rpexpcl 13302 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1412, 13sylan 580 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1514rpred 12285 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ)
16 simpll 763 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ)
17 simprl 767 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
18 simprr 769 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
19 simplr 765 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴)
20 ltexp2a 13384 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴𝑥 < 𝑦)) → (𝐴𝑥) < (𝐴𝑦))
2120expr 457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
2216, 17, 18, 19, 21syl31anc 1366 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
231, 2, 3, 4, 15, 22ltord1 11020 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2423ancom2s 646 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2524exp43 437 . . 3 (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
2625com24 95 . 2 (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
27263imp1 1340 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080  wcel 2083   class class class wbr 4968  (class class class)co 7023  cr 10389  0cc0 10390  1c1 10391   < clt 10528  cz 11835  +crp 12243  cexp 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-seq 13224  df-exp 13284
This theorem is referenced by:  leexp2  13389  ltexp2r  13391  ltexp2d  13468
  Copyright terms: Public domain W3C validator