![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexp2 | Structured version Visualization version GIF version |
Description: Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
ltexp2 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7031 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
2 | oveq2 7031 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝐴↑𝑥) = (𝐴↑𝑀)) | |
3 | oveq2 7031 | . . . . . 6 ⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) | |
4 | zssre 11842 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
5 | simpl 483 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
6 | 0red 10497 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
7 | 1red 10495 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
8 | 0lt1 11016 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1) |
10 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴) | |
11 | 6, 7, 5, 9, 10 | lttrd 10654 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴) |
12 | 5, 11 | elrpd 12282 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+) |
13 | rpexpcl 13302 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) | |
14 | 12, 13 | sylan 580 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) |
15 | 14 | rpred 12285 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ) |
16 | simpll 763 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ) | |
17 | simprl 767 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
18 | simprr 769 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
19 | simplr 765 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴) | |
20 | ltexp2a 13384 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑥 < 𝑦)) → (𝐴↑𝑥) < (𝐴↑𝑦)) | |
21 | 20 | expr 457 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
22 | 16, 17, 18, 19, 21 | syl31anc 1366 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
23 | 1, 2, 3, 4, 15, 22 | ltord1 11020 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
24 | 23 | ancom2s 646 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
25 | 24 | exp43 437 | . . 3 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁)))))) |
26 | 25 | com24 95 | . 2 ⊢ (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁)))))) |
27 | 26 | 3imp1 1340 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2083 class class class wbr 4968 (class class class)co 7023 ℝcr 10389 0cc0 10390 1c1 10391 < clt 10528 ℤcz 11835 ℝ+crp 12243 ↑cexp 13283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-seq 13224 df-exp 13284 |
This theorem is referenced by: leexp2 13389 ltexp2r 13391 ltexp2d 13468 |
Copyright terms: Public domain | W3C validator |