| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexp2 | Structured version Visualization version GIF version | ||
| Description: Strict ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| ltexp2 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7377 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
| 2 | oveq2 7377 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝐴↑𝑥) = (𝐴↑𝑀)) | |
| 3 | oveq2 7377 | . . . . . 6 ⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) | |
| 4 | zssre 12512 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
| 5 | simpl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
| 6 | 0red 11153 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
| 7 | 1red 11151 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
| 8 | 0lt1 11676 | . . . . . . . . . . 11 ⊢ 0 < 1 | |
| 9 | 8 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1) |
| 10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴) | |
| 11 | 6, 7, 5, 9, 10 | lttrd 11311 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴) |
| 12 | 5, 11 | elrpd 12968 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+) |
| 13 | rpexpcl 14021 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) | |
| 14 | 12, 13 | sylan 580 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) |
| 15 | 14 | rpred 12971 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ) |
| 16 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ) | |
| 17 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
| 18 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
| 19 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴) | |
| 20 | ltexp2a 14107 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑥 < 𝑦)) → (𝐴↑𝑥) < (𝐴↑𝑦)) | |
| 21 | 20 | expr 456 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
| 22 | 16, 17, 18, 19, 21 | syl31anc 1375 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
| 23 | 1, 2, 3, 4, 15, 22 | ltord1 11680 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
| 24 | 23 | ancom2s 650 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
| 25 | 24 | exp43 436 | . . 3 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁)))))) |
| 26 | 25 | com24 95 | . 2 ⊢ (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁)))))) |
| 27 | 26 | 3imp1 1348 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 ℤcz 12505 ℝ+crp 12927 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: leexp2 14112 ltexp2r 14114 ltexp2d 14192 |
| Copyright terms: Public domain | W3C validator |