MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexp2 Structured version   Visualization version   GIF version

Theorem ltexp2 14140
Description: Strict ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem ltexp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
2 oveq2 7420 . . . . . 6 (𝑥 = 𝑀 → (𝐴𝑥) = (𝐴𝑀))
3 oveq2 7420 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
4 zssre 12570 . . . . . 6 ℤ ⊆ ℝ
5 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
6 0red 11222 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
7 1red 11220 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
8 0lt1 11741 . . . . . . . . . . 11 0 < 1
98a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
10 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
116, 7, 5, 9, 10lttrd 11380 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
125, 11elrpd 13018 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
13 rpexpcl 14051 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1412, 13sylan 579 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1514rpred 13021 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ)
16 simpll 764 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ)
17 simprl 768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
18 simprr 770 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
19 simplr 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴)
20 ltexp2a 14136 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴𝑥 < 𝑦)) → (𝐴𝑥) < (𝐴𝑦))
2120expr 456 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
2216, 17, 18, 19, 21syl31anc 1372 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
231, 2, 3, 4, 15, 22ltord1 11745 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2423ancom2s 647 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2524exp43 436 . . 3 (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
2625com24 95 . 2 (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
27263imp1 1346 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wcel 2105   class class class wbr 5148  (class class class)co 7412  cr 11112  0cc0 11113  1c1 11114   < clt 11253  cz 12563  +crp 12979  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-seq 13972  df-exp 14033
This theorem is referenced by:  leexp2  14141  ltexp2r  14143  ltexp2d  14219
  Copyright terms: Public domain W3C validator