| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for integer exponentiation of reals. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expcan | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7363 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
| 2 | oveq2 7363 | . . . . . . 7 ⊢ (𝑥 = 𝑀 → (𝐴↑𝑥) = (𝐴↑𝑀)) | |
| 3 | oveq2 7363 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) | |
| 4 | zssre 12485 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
| 5 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
| 6 | 0red 11125 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
| 7 | 1red 11123 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
| 8 | 0lt1 11649 | . . . . . . . . . . . 12 ⊢ 0 < 1 | |
| 9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1) |
| 10 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴) | |
| 11 | 6, 7, 5, 9, 10 | lttrd 11284 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴) |
| 12 | 5, 11 | elrpd 12941 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+) |
| 13 | rpexpcl 13997 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) | |
| 14 | 12, 13 | sylan 580 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) |
| 15 | 14 | rpred 12944 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ) |
| 16 | simpll 766 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ) | |
| 17 | simprl 770 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
| 18 | simprr 772 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
| 19 | simplr 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴) | |
| 20 | ltexp2a 14083 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑥 < 𝑦)) → (𝐴↑𝑥) < (𝐴↑𝑦)) | |
| 21 | 20 | expr 456 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
| 22 | 16, 17, 18, 19, 21 | syl31anc 1375 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
| 23 | 1, 2, 3, 4, 15, 22 | eqord1 11655 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁))) |
| 24 | 23 | ancom2s 650 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁))) |
| 25 | 24 | exp43 436 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁)))))) |
| 26 | 25 | com24 95 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁)))))) |
| 27 | 26 | 3imp1 1348 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁))) |
| 28 | 27 | bicomd 223 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 0cc0 11016 1c1 11017 < clt 11156 ℤcz 12478 ℝ+crp 12900 ↑cexp 13978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-seq 13919 df-exp 13979 |
| This theorem is referenced by: expcand 14170 fmtnof1 47649 |
| Copyright terms: Public domain | W3C validator |