MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcan Structured version   Visualization version   GIF version

Theorem expcan 13532
Description: Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expcan (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴𝑀) = (𝐴𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem expcan
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7163 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
2 oveq2 7163 . . . . . . 7 (𝑥 = 𝑀 → (𝐴𝑥) = (𝐴𝑀))
3 oveq2 7163 . . . . . . 7 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
4 zssre 11987 . . . . . . 7 ℤ ⊆ ℝ
5 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
6 0red 10643 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
7 1red 10641 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
8 0lt1 11161 . . . . . . . . . . . 12 0 < 1
98a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
10 simpr 487 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
116, 7, 5, 9, 10lttrd 10800 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
125, 11elrpd 12427 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
13 rpexpcl 13447 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1412, 13sylan 582 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1514rpred 12430 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ)
16 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ)
17 simprl 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
18 simprr 771 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
19 simplr 767 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴)
20 ltexp2a 13529 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴𝑥 < 𝑦)) → (𝐴𝑥) < (𝐴𝑦))
2120expr 459 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
2216, 17, 18, 19, 21syl31anc 1369 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
231, 2, 3, 4, 15, 22eqord1 11167 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 = 𝑁 ↔ (𝐴𝑀) = (𝐴𝑁)))
2423ancom2s 648 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 = 𝑁 ↔ (𝐴𝑀) = (𝐴𝑁)))
2524exp43 439 . . . 4 (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 = 𝑁 ↔ (𝐴𝑀) = (𝐴𝑁))))))
2625com24 95 . . 3 (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 = 𝑁 ↔ (𝐴𝑀) = (𝐴𝑁))))))
27263imp1 1343 . 2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 = 𝑁 ↔ (𝐴𝑀) = (𝐴𝑁)))
2827bicomd 225 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴𝑀) = (𝐴𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5065  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   < clt 10674  cz 11980  +crp 12388  cexp 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429
This theorem is referenced by:  expcand  13615  fmtnof1  43698
  Copyright terms: Public domain W3C validator