![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expcan | Structured version Visualization version GIF version |
Description: Cancellation law for integer exponentiation of reals. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expcan | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7421 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
2 | oveq2 7421 | . . . . . . 7 ⊢ (𝑥 = 𝑀 → (𝐴↑𝑥) = (𝐴↑𝑀)) | |
3 | oveq2 7421 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) | |
4 | zssre 12571 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
5 | simpl 481 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
6 | 0red 11223 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
7 | 1red 11221 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
8 | 0lt1 11742 | . . . . . . . . . . . 12 ⊢ 0 < 1 | |
9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1) |
10 | simpr 483 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴) | |
11 | 6, 7, 5, 9, 10 | lttrd 11381 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴) |
12 | 5, 11 | elrpd 13019 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+) |
13 | rpexpcl 14052 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) | |
14 | 12, 13 | sylan 578 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ+) |
15 | 14 | rpred 13022 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ ℝ) |
16 | simpll 763 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ) | |
17 | simprl 767 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
18 | simprr 769 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
19 | simplr 765 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴) | |
20 | ltexp2a 14137 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑥 < 𝑦)) → (𝐴↑𝑥) < (𝐴↑𝑦)) | |
21 | 20 | expr 455 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
22 | 16, 17, 18, 19, 21 | syl31anc 1371 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴↑𝑥) < (𝐴↑𝑦))) |
23 | 1, 2, 3, 4, 15, 22 | eqord1 11748 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁))) |
24 | 23 | ancom2s 646 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁))) |
25 | 24 | exp43 435 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁)))))) |
26 | 25 | com24 95 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁)))))) |
27 | 26 | 3imp1 1345 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 = 𝑁 ↔ (𝐴↑𝑀) = (𝐴↑𝑁))) |
28 | 27 | bicomd 222 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 class class class wbr 5149 (class class class)co 7413 ℝcr 11113 0cc0 11114 1c1 11115 < clt 11254 ℤcz 12564 ℝ+crp 12980 ↑cexp 14033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-rp 12981 df-seq 13973 df-exp 14034 |
This theorem is referenced by: expcand 14222 fmtnof1 46503 |
Copyright terms: Public domain | W3C validator |