MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlkle Structured version   Visualization version   GIF version

Theorem ewlkle 27395
Description: An s-walk of edges is also a t-walk of edges if 𝑡𝑠. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
ewlkle ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))

Proof of Theorem ewlkle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 27393 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 simpl2 1189 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 xnn0xr 11960 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℕ0*𝑇 ∈ ℝ*)
54adantl 485 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → 𝑇 ∈ ℝ*)
6 xnn0xr 11960 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
76adantr 484 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → 𝑆 ∈ ℝ*)
8 fvex 6658 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
98inex1 5185 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
10 hashxrcl 13714 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
119, 10mp1i 13 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
12 xrletr 12539 . . . . . . . . . . . . . 14 ((𝑇 ∈ ℝ*𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*) → ((𝑇𝑆𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
135, 7, 11, 12syl3anc 1368 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → ((𝑇𝑆𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1413exp4b 434 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → (𝑇 ∈ ℕ0* → (𝑇𝑆 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
1514adantl 485 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝑇 ∈ ℕ0* → (𝑇𝑆 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
1615imp32 422 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1716ralimdv 3145 . . . . . . . . 9 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1817ex 416 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((𝑇 ∈ ℕ0*𝑇𝑆) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
1918com23 86 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
2019a1d 25 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
21203imp1 1344 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))
22 simpl1l 1221 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐺 ∈ V)
23 simprl 770 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝑇 ∈ ℕ0*)
241isewlk 27392 . . . . . 6 ((𝐺 ∈ V ∧ 𝑇 ∈ ℕ0*𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝐹 ∈ (𝐺 EdgWalks 𝑇) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
2522, 23, 3, 24syl3anc 1368 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑇) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
263, 21, 25mpbir2and 712 . . . 4 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
2726ex 416 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)))
282, 27syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)))
29283impib 1113 1 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wral 3106  Vcvv 3441  cin 3880   class class class wbr 5030  dom cdm 5519  cfv 6324  (class class class)co 7135  1c1 10527  *cxr 10663  cle 10665  cmin 10859  0*cxnn0 11955  ..^cfzo 13028  chash 13686  Word cword 13857  iEdgciedg 26790   EdgWalks cewlks 27385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-ewlks 27388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator