MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlkle Structured version   Visualization version   GIF version

Theorem ewlkle 29638
Description: An s-walk of edges is also a t-walk of edges if 𝑡𝑠. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
ewlkle ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))

Proof of Theorem ewlkle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 29636 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 simpl2 1191 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 xnn0xr 12602 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℕ0*𝑇 ∈ ℝ*)
54adantl 481 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → 𝑇 ∈ ℝ*)
6 xnn0xr 12602 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
76adantr 480 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → 𝑆 ∈ ℝ*)
8 fvex 6920 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
98inex1 5323 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
10 hashxrcl 14393 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
119, 10mp1i 13 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
12 xrletr 13197 . . . . . . . . . . . . . 14 ((𝑇 ∈ ℝ*𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*) → ((𝑇𝑆𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
135, 7, 11, 12syl3anc 1370 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → ((𝑇𝑆𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1413exp4b 430 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → (𝑇 ∈ ℕ0* → (𝑇𝑆 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
1514adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝑇 ∈ ℕ0* → (𝑇𝑆 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
1615imp32 418 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1716ralimdv 3167 . . . . . . . . 9 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1817ex 412 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((𝑇 ∈ ℕ0*𝑇𝑆) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
1918com23 86 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
2019a1d 25 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
21203imp1 1346 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))
22 simpl1l 1223 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐺 ∈ V)
23 simprl 771 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝑇 ∈ ℕ0*)
241isewlk 29635 . . . . . 6 ((𝐺 ∈ V ∧ 𝑇 ∈ ℕ0*𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝐹 ∈ (𝐺 EdgWalks 𝑇) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
2522, 23, 3, 24syl3anc 1370 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑇) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
263, 21, 25mpbir2and 713 . . . 4 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
2726ex 412 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)))
282, 27syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)))
29283impib 1115 1 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wral 3059  Vcvv 3478  cin 3962   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  1c1 11154  *cxr 11292  cle 11294  cmin 11490  0*cxnn0 12597  ..^cfzo 13691  chash 14366  Word cword 14549  iEdgciedg 29029   EdgWalks cewlks 29628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-ewlks 29631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator