MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlkle Structured version   Visualization version   GIF version

Theorem ewlkle 29432
Description: An s-walk of edges is also a t-walk of edges if 𝑡𝑠. (Contributed by AV, 4-Jan-2021.)
Assertion
Ref Expression
ewlkle ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))

Proof of Theorem ewlkle
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
21ewlkprop 29430 . . 3 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3 simpl2 1190 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐹 ∈ Word dom (iEdg‘𝐺))
4 xnn0xr 12580 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℕ0*𝑇 ∈ ℝ*)
54adantl 481 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → 𝑇 ∈ ℝ*)
6 xnn0xr 12580 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℕ0*𝑆 ∈ ℝ*)
76adantr 480 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → 𝑆 ∈ ℝ*)
8 fvex 6910 . . . . . . . . . . . . . . . 16 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∈ V
98inex1 5317 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V
10 hashxrcl 14349 . . . . . . . . . . . . . . 15 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))) ∈ V → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
119, 10mp1i 13 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*)
12 xrletr 13170 . . . . . . . . . . . . . 14 ((𝑇 ∈ ℝ*𝑆 ∈ ℝ* ∧ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) ∈ ℝ*) → ((𝑇𝑆𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
135, 7, 11, 12syl3anc 1369 . . . . . . . . . . . . 13 ((𝑆 ∈ ℕ0*𝑇 ∈ ℕ0*) → ((𝑇𝑆𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1413exp4b 430 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0* → (𝑇 ∈ ℕ0* → (𝑇𝑆 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
1514adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝑇 ∈ ℕ0* → (𝑇𝑆 → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
1615imp32 418 . . . . . . . . . 10 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1716ralimdv 3166 . . . . . . . . 9 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))
1817ex 412 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ((𝑇 ∈ ℕ0*𝑇𝑆) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
1918com23 86 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
2019a1d 25 . . . . . 6 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))))))
21203imp1 1345 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))
22 simpl1l 1222 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐺 ∈ V)
23 simprl 770 . . . . . 6 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝑇 ∈ ℕ0*)
241isewlk 29429 . . . . . 6 ((𝐺 ∈ V ∧ 𝑇 ∈ ℕ0*𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝐹 ∈ (𝐺 EdgWalks 𝑇) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
2522, 23, 3, 24syl3anc 1369 . . . . 5 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑇) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑇 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘)))))))
263, 21, 25mpbir2and 712 . . . 4 ((((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) ∧ (𝑇 ∈ ℕ0*𝑇𝑆)) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
2726ex 412 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)))
282, 27syl 17 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇)))
29283impib 1114 1 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ 𝑇 ∈ ℕ0*𝑇𝑆) → 𝐹 ∈ (𝐺 EdgWalks 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2099  wral 3058  Vcvv 3471  cin 3946   class class class wbr 5148  dom cdm 5678  cfv 6548  (class class class)co 7420  1c1 11140  *cxr 11278  cle 11280  cmin 11475  0*cxnn0 12575  ..^cfzo 13660  chash 14322  Word cword 14497  iEdgciedg 28823   EdgWalks cewlks 29422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-xnn0 12576  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-ewlks 29425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator