Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . . . . 6
β’
(VtxβπΊ) =
(VtxβπΊ) |
2 | 1 | clwwlkbp 29238 |
. . . . 5
β’ (π β (ClWWalksβπΊ) β (πΊ β V β§ π β Word (VtxβπΊ) β§ π β β
)) |
3 | | cshw0 14744 |
. . . . . . . 8
β’ (π β Word (VtxβπΊ) β (π cyclShift 0) = π) |
4 | 3 | 3ad2ant2 1135 |
. . . . . . 7
β’ ((πΊ β V β§ π β Word (VtxβπΊ) β§ π β β
) β (π cyclShift 0) = π) |
5 | 4 | eleq1d 2819 |
. . . . . 6
β’ ((πΊ β V β§ π β Word (VtxβπΊ) β§ π β β
) β ((π cyclShift 0) β (ClWWalksβπΊ) β π β (ClWWalksβπΊ))) |
6 | 5 | biimprd 247 |
. . . . 5
β’ ((πΊ β V β§ π β Word (VtxβπΊ) β§ π β β
) β (π β (ClWWalksβπΊ) β (π cyclShift 0) β (ClWWalksβπΊ))) |
7 | 2, 6 | mpcom 38 |
. . . 4
β’ (π β (ClWWalksβπΊ) β (π cyclShift 0) β (ClWWalksβπΊ)) |
8 | | oveq2 7417 |
. . . . 5
β’ (π = 0 β (π cyclShift π) = (π cyclShift 0)) |
9 | 8 | eleq1d 2819 |
. . . 4
β’ (π = 0 β ((π cyclShift π) β (ClWWalksβπΊ) β (π cyclShift 0) β (ClWWalksβπΊ))) |
10 | 7, 9 | syl5ibrcom 246 |
. . 3
β’ (π β (ClWWalksβπΊ) β (π = 0 β (π cyclShift π) β (ClWWalksβπΊ))) |
11 | 10 | adantr 482 |
. 2
β’ ((π β (ClWWalksβπΊ) β§ π β (0..^(β―βπ))) β (π = 0 β (π cyclShift π) β (ClWWalksβπΊ))) |
12 | | fzo1fzo0n0 13683 |
. . . . . 6
β’ (π β
(1..^(β―βπ))
β (π β
(0..^(β―βπ))
β§ π β
0)) |
13 | | cshwcl 14748 |
. . . . . . . . . . . . 13
β’ (π β Word (VtxβπΊ) β (π cyclShift π) β Word (VtxβπΊ)) |
14 | 13 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β Word (VtxβπΊ) β§ π β β
) β (π cyclShift π) β Word (VtxβπΊ)) |
15 | 14 | 3ad2ant1 1134 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β (π cyclShift π) β Word (VtxβπΊ)) |
16 | 15 | adantr 482 |
. . . . . . . . . 10
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β (π cyclShift π) β Word (VtxβπΊ)) |
17 | | simpl 484 |
. . . . . . . . . . . . . 14
β’ ((π β Word (VtxβπΊ) β§ π β β
) β π β Word (VtxβπΊ)) |
18 | | elfzoelz 13632 |
. . . . . . . . . . . . . 14
β’ (π β
(1..^(β―βπ))
β π β
β€) |
19 | | cshwlen 14749 |
. . . . . . . . . . . . . 14
β’ ((π β Word (VtxβπΊ) β§ π β β€) β
(β―β(π cyclShift
π)) = (β―βπ)) |
20 | 17, 18, 19 | syl2an 597 |
. . . . . . . . . . . . 13
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β (β―β(π cyclShift π)) = (β―βπ)) |
21 | | hasheq0 14323 |
. . . . . . . . . . . . . . . . 17
β’ (π β Word (VtxβπΊ) β ((β―βπ) = 0 β π = β
)) |
22 | 21 | bicomd 222 |
. . . . . . . . . . . . . . . 16
β’ (π β Word (VtxβπΊ) β (π = β
β (β―βπ) = 0)) |
23 | 22 | necon3bid 2986 |
. . . . . . . . . . . . . . 15
β’ (π β Word (VtxβπΊ) β (π β β
β (β―βπ) β 0)) |
24 | 23 | biimpa 478 |
. . . . . . . . . . . . . 14
β’ ((π β Word (VtxβπΊ) β§ π β β
) β (β―βπ) β 0) |
25 | 24 | adantr 482 |
. . . . . . . . . . . . 13
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β (β―βπ) β 0) |
26 | 20, 25 | eqnetrd 3009 |
. . . . . . . . . . . 12
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β (β―β(π cyclShift π)) β 0) |
27 | 14 | adantr 482 |
. . . . . . . . . . . . . 14
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β (π cyclShift π) β Word (VtxβπΊ)) |
28 | | hasheq0 14323 |
. . . . . . . . . . . . . 14
β’ ((π cyclShift π) β Word (VtxβπΊ) β ((β―β(π cyclShift π)) = 0 β (π cyclShift π) = β
)) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . 13
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β
((β―β(π
cyclShift π)) = 0 β
(π cyclShift π) = β
)) |
30 | 29 | necon3bid 2986 |
. . . . . . . . . . . 12
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β
((β―β(π
cyclShift π)) β 0 β
(π cyclShift π) β
β
)) |
31 | 26, 30 | mpbid 231 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ π β (1..^(β―βπ))) β (π cyclShift π) β β
) |
32 | 31 | 3ad2antl1 1186 |
. . . . . . . . . 10
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β (π cyclShift π) β β
) |
33 | 16, 32 | jca 513 |
. . . . . . . . 9
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β ((π cyclShift π) β Word (VtxβπΊ) β§ (π cyclShift π) β β
)) |
34 | 17 | 3ad2ant1 1134 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β π β Word (VtxβπΊ)) |
35 | 34 | anim1i 616 |
. . . . . . . . . 10
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β (π β Word (VtxβπΊ) β§ π β (1..^(β―βπ)))) |
36 | | 3simpc 1151 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) |
37 | 36 | adantr 482 |
. . . . . . . . . 10
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) |
38 | | clwwisshclwwslem 29267 |
. . . . . . . . . 10
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β ((βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β βπ β
(0..^((β―β(π
cyclShift π)) β
1)){((π cyclShift π)βπ), ((π cyclShift π)β(π + 1))} β (EdgβπΊ))) |
39 | 35, 37, 38 | sylc 65 |
. . . . . . . . 9
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β βπ β
(0..^((β―β(π
cyclShift π)) β
1)){((π cyclShift π)βπ), ((π cyclShift π)β(π + 1))} β (EdgβπΊ)) |
40 | | elfzofz 13648 |
. . . . . . . . . . . . . . . 16
β’ (π β
(1..^(β―βπ))
β π β
(1...(β―βπ))) |
41 | | lswcshw 14765 |
. . . . . . . . . . . . . . . 16
β’ ((π β Word (VtxβπΊ) β§ π β (1...(β―βπ))) β (lastSβ(π cyclShift π)) = (πβ(π β 1))) |
42 | 40, 41 | sylan2 594 |
. . . . . . . . . . . . . . 15
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β (lastSβ(π cyclShift π)) = (πβ(π β 1))) |
43 | | fzo0ss1 13662 |
. . . . . . . . . . . . . . . . 17
β’
(1..^(β―βπ)) β (0..^(β―βπ)) |
44 | 43 | sseli 3979 |
. . . . . . . . . . . . . . . 16
β’ (π β
(1..^(β―βπ))
β π β
(0..^(β―βπ))) |
45 | | cshwidx0 14756 |
. . . . . . . . . . . . . . . 16
β’ ((π β Word (VtxβπΊ) β§ π β (0..^(β―βπ))) β ((π cyclShift π)β0) = (πβπ)) |
46 | 44, 45 | sylan2 594 |
. . . . . . . . . . . . . . 15
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β ((π cyclShift π)β0) = (πβπ)) |
47 | 42, 46 | preq12d 4746 |
. . . . . . . . . . . . . 14
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} = {(πβ(π β 1)), (πβπ)}) |
48 | 47 | ex 414 |
. . . . . . . . . . . . 13
β’ (π β Word (VtxβπΊ) β (π β (1..^(β―βπ)) β {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} = {(πβ(π β 1)), (πβπ)})) |
49 | 48 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β Word (VtxβπΊ) β§ π β β
) β (π β (1..^(β―βπ)) β {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} = {(πβ(π β 1)), (πβπ)})) |
50 | 49 | 3ad2ant1 1134 |
. . . . . . . . . . 11
β’ (((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β (π β (1..^(β―βπ)) β {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} = {(πβ(π β 1)), (πβπ)})) |
51 | 50 | imp 408 |
. . . . . . . . . 10
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} = {(πβ(π β 1)), (πβπ)}) |
52 | | elfzo1elm1fzo0 13733 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(1..^(β―βπ))
β (π β 1) β
(0..^((β―βπ)
β 1))) |
53 | 52 | adantl 483 |
. . . . . . . . . . . . . . . 16
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β (π β 1) β
(0..^((β―βπ)
β 1))) |
54 | | fveq2 6892 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π β 1) β (πβπ) = (πβ(π β 1))) |
55 | 54 | adantl 483 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β§ π = (π β 1)) β (πβπ) = (πβ(π β 1))) |
56 | | fvoveq1 7432 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (π β 1) β (πβ(π + 1)) = (πβ((π β 1) + 1))) |
57 | 18 | zcnd 12667 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β
(1..^(β―βπ))
β π β
β) |
58 | 57 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β π β β) |
59 | | 1cnd 11209 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β 1 β
β) |
60 | 58, 59 | npcand 11575 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β ((π β 1) + 1) = π) |
61 | 60 | fveq2d 6896 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β (πβ((π β 1) + 1)) = (πβπ)) |
62 | 56, 61 | sylan9eqr 2795 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β§ π = (π β 1)) β (πβ(π + 1)) = (πβπ)) |
63 | 55, 62 | preq12d 4746 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β§ π = (π β 1)) β {(πβπ), (πβ(π + 1))} = {(πβ(π β 1)), (πβπ)}) |
64 | 63 | eleq1d 2819 |
. . . . . . . . . . . . . . . 16
β’ (((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β§ π = (π β 1)) β ({(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ))) |
65 | 53, 64 | rspcdv 3605 |
. . . . . . . . . . . . . . 15
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ))) |
66 | 65 | a1d 25 |
. . . . . . . . . . . . . 14
β’ ((π β Word (VtxβπΊ) β§ π β (1..^(β―βπ))) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ)))) |
67 | 66 | ex 414 |
. . . . . . . . . . . . 13
β’ (π β Word (VtxβπΊ) β (π β (1..^(β―βπ)) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ))))) |
68 | 67 | adantr 482 |
. . . . . . . . . . . 12
β’ ((π β Word (VtxβπΊ) β§ π β β
) β (π β (1..^(β―βπ)) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ))))) |
69 | 68 | com24 95 |
. . . . . . . . . . 11
β’ ((π β Word (VtxβπΊ) β§ π β β
) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β ({(lastSβπ), (πβ0)} β (EdgβπΊ) β (π β (1..^(β―βπ)) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ))))) |
70 | 69 | 3imp1 1348 |
. . . . . . . . . 10
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β {(πβ(π β 1)), (πβπ)} β (EdgβπΊ)) |
71 | 51, 70 | eqeltrd 2834 |
. . . . . . . . 9
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} β (EdgβπΊ)) |
72 | 33, 39, 71 | 3jca 1129 |
. . . . . . . 8
β’ ((((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ π β (1..^(β―βπ))) β (((π cyclShift π) β Word (VtxβπΊ) β§ (π cyclShift π) β β
) β§ βπ β
(0..^((β―β(π
cyclShift π)) β
1)){((π cyclShift π)βπ), ((π cyclShift π)β(π + 1))} β (EdgβπΊ) β§ {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} β (EdgβπΊ))) |
73 | 72 | expcom 415 |
. . . . . . 7
β’ (π β
(1..^(β―βπ))
β (((π β Word
(VtxβπΊ) β§ π β β
) β§
βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β (((π cyclShift π) β Word (VtxβπΊ) β§ (π cyclShift π) β β
) β§ βπ β
(0..^((β―β(π
cyclShift π)) β
1)){((π cyclShift π)βπ), ((π cyclShift π)β(π + 1))} β (EdgβπΊ) β§ {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} β (EdgβπΊ)))) |
74 | | eqid 2733 |
. . . . . . . 8
β’
(EdgβπΊ) =
(EdgβπΊ) |
75 | 1, 74 | isclwwlk 29237 |
. . . . . . 7
β’ (π β (ClWWalksβπΊ) β ((π β Word (VtxβπΊ) β§ π β β
) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) |
76 | 1, 74 | isclwwlk 29237 |
. . . . . . 7
β’ ((π cyclShift π) β (ClWWalksβπΊ) β (((π cyclShift π) β Word (VtxβπΊ) β§ (π cyclShift π) β β
) β§ βπ β
(0..^((β―β(π
cyclShift π)) β
1)){((π cyclShift π)βπ), ((π cyclShift π)β(π + 1))} β (EdgβπΊ) β§ {(lastSβ(π cyclShift π)), ((π cyclShift π)β0)} β (EdgβπΊ))) |
77 | 73, 75, 76 | 3imtr4g 296 |
. . . . . 6
β’ (π β
(1..^(β―βπ))
β (π β
(ClWWalksβπΊ) β
(π cyclShift π) β (ClWWalksβπΊ))) |
78 | 12, 77 | sylbir 234 |
. . . . 5
β’ ((π β
(0..^(β―βπ))
β§ π β 0) β
(π β
(ClWWalksβπΊ) β
(π cyclShift π) β (ClWWalksβπΊ))) |
79 | 78 | expcom 415 |
. . . 4
β’ (π β 0 β (π β
(0..^(β―βπ))
β (π β
(ClWWalksβπΊ) β
(π cyclShift π) β (ClWWalksβπΊ)))) |
80 | 79 | com13 88 |
. . 3
β’ (π β (ClWWalksβπΊ) β (π β (0..^(β―βπ)) β (π β 0 β (π cyclShift π) β (ClWWalksβπΊ)))) |
81 | 80 | imp 408 |
. 2
β’ ((π β (ClWWalksβπΊ) β§ π β (0..^(β―βπ))) β (π β 0 β (π cyclShift π) β (ClWWalksβπΊ))) |
82 | 11, 81 | pm2.61dne 3029 |
1
β’ ((π β (ClWWalksβπΊ) β§ π β (0..^(β―βπ))) β (π cyclShift π) β (ClWWalksβπΊ)) |