MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwws Structured version   Visualization version   GIF version

Theorem clwwisshclwws 28379
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwws ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlkbp 28349 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
3 cshw0 14507 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 0) = 𝑊)
433ad2ant2 1133 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 0) = 𝑊)
54eleq1d 2823 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))
65biimprd 247 . . . . 5 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
72, 6mpcom 38 . . . 4 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺))
8 oveq2 7283 . . . . 5 (𝑁 = 0 → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 0))
98eleq1d 2823 . . . 4 (𝑁 = 0 → ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
107, 9syl5ibrcom 246 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
1110adantr 481 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
12 fzo1fzo0n0 13438 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0))
13 cshwcl 14511 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1413adantr 481 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1132 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1615adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
17 simpl 483 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word (Vtx‘𝐺))
18 elfzoelz 13387 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
19 cshwlen 14512 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
2017, 18, 19syl2an 596 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
21 hasheq0 14078 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2221bicomd 222 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 = ∅ ↔ (♯‘𝑊) = 0))
2322necon3bid 2988 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ≠ 0))
2423biimpa 477 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ≠ 0)
2524adantr 481 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ≠ 0)
2620, 25eqnetrd 3011 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) ≠ 0)
2714adantr 481 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
28 hasheq0 14078 . . . . . . . . . . . . . 14 ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
3029necon3bid 2988 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) ≠ 0 ↔ (𝑊 cyclShift 𝑁) ≠ ∅))
3126, 30mpbid 231 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
32313ad2antl1 1184 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
3316, 32jca 512 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅))
34173ad2ant1 1132 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
3534anim1i 615 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))))
36 3simpc 1149 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
3736adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
38 clwwisshclwwslem 28378 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺)))
3935, 37, 38sylc 65 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺))
40 elfzofz 13403 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊)))
41 lswcshw 14528 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
4240, 41sylan2 593 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
43 fzo0ss1 13417 . . . . . . . . . . . . . . . . 17 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
4443sseli 3917 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (0..^(♯‘𝑊)))
45 cshwidx0 14519 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4644, 45sylan2 593 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4742, 46preq12d 4677 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
4847ex 413 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
4948adantr 481 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
50493ad2ant1 1132 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
5150imp 407 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
52 elfzo1elm1fzo0 13488 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
5352adantl 482 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
54 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
5554adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
56 fvoveq1 7298 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊‘(𝑖 + 1)) = (𝑊‘((𝑁 − 1) + 1)))
5718zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
5857adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
59 1cnd 10970 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 1 ∈ ℂ)
6058, 59npcand 11336 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑁 − 1) + 1) = 𝑁)
6160fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊‘((𝑁 − 1) + 1)) = (𝑊𝑁))
6256, 61sylan9eqr 2800 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊𝑁))
6355, 62preq12d 4677 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
6463eleq1d 2823 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6553, 64rspcdv 3553 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6665a1d 25 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
6766ex 413 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6867adantr 481 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6968com24 95 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
70693imp1 1346 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
7151, 70eqeltrd 2839 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))
7233, 39, 713jca 1127 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7372expcom 414 . . . . . . 7 (𝑁 ∈ (1..^(♯‘𝑊)) → (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))))
74 eqid 2738 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
751, 74isclwwlk 28348 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
761, 74isclwwlk 28348 . . . . . . 7 ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7773, 75, 763imtr4g 296 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7812, 77sylbir 234 . . . . 5 ((𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7978expcom 414 . . . 4 (𝑁 ≠ 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8079com13 88 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8180imp 407 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
8211, 81pm2.61dne 3031 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  c0 4256  {cpr 4563  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265   cyclShift ccsh 14501  Vtxcvtx 27366  Edgcedg 27417  ClWWalkscclwwlk 28345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-clwwlk 28346
This theorem is referenced by:  clwwisshclwwsn  28380
  Copyright terms: Public domain W3C validator