Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | 1 | clwwlkbp 28250 |
. . . . 5
⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅)) |
3 | | cshw0 14435 |
. . . . . . . 8
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 0) = 𝑊) |
4 | 3 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 0) = 𝑊) |
5 | 4 | eleq1d 2823 |
. . . . . 6
⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
6 | 5 | biimprd 247 |
. . . . 5
⊢ ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺))) |
7 | 2, 6 | mpcom 38 |
. . . 4
⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)) |
8 | | oveq2 7263 |
. . . . 5
⊢ (𝑁 = 0 → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 0)) |
9 | 8 | eleq1d 2823 |
. . . 4
⊢ (𝑁 = 0 → ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺))) |
10 | 7, 9 | syl5ibrcom 246 |
. . 3
⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))) |
11 | 10 | adantr 480 |
. 2
⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))) |
12 | | fzo1fzo0n0 13366 |
. . . . . 6
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
↔ (𝑁 ∈
(0..^(♯‘𝑊))
∧ 𝑁 ≠
0)) |
13 | | cshwcl 14439 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺)) |
14 | 13 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺)) |
15 | 14 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺)) |
16 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺)) |
17 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word (Vtx‘𝐺)) |
18 | | elfzoelz 13316 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ 𝑁 ∈
ℤ) |
19 | | cshwlen 14440 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℤ) →
(♯‘(𝑊 cyclShift
𝑁)) = (♯‘𝑊)) |
20 | 17, 18, 19 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)) |
21 | | hasheq0 14006 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) |
22 | 21 | bicomd 222 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 = ∅ ↔ (♯‘𝑊) = 0)) |
23 | 22 | necon3bid 2987 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ≠ 0)) |
24 | 23 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ≠ 0) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ≠ 0) |
26 | 20, 25 | eqnetrd 3010 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) ≠ 0) |
27 | 14 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺)) |
28 | | hasheq0 14006 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅)) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) →
((♯‘(𝑊
cyclShift 𝑁)) = 0 ↔
(𝑊 cyclShift 𝑁) = ∅)) |
30 | 29 | necon3bid 2987 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) →
((♯‘(𝑊
cyclShift 𝑁)) ≠ 0 ↔
(𝑊 cyclShift 𝑁) ≠
∅)) |
31 | 26, 30 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅) |
32 | 31 | 3ad2antl1 1183 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅) |
33 | 16, 32 | jca 511 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅)) |
34 | 17 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺)) |
35 | 34 | anim1i 614 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊)))) |
36 | | 3simpc 1148 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
37 | 36 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
38 | | clwwisshclwwslem 28279 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ∀𝑗 ∈
(0..^((♯‘(𝑊
cyclShift 𝑁)) −
1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺))) |
39 | 35, 37, 38 | sylc 65 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ∀𝑗 ∈
(0..^((♯‘(𝑊
cyclShift 𝑁)) −
1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺)) |
40 | | elfzofz 13331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ 𝑁 ∈
(1...(♯‘𝑊))) |
41 | | lswcshw 14456 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1))) |
42 | 40, 41 | sylan2 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1))) |
43 | | fzo0ss1 13345 |
. . . . . . . . . . . . . . . . 17
⊢
(1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) |
44 | 43 | sseli 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ 𝑁 ∈
(0..^(♯‘𝑊))) |
45 | | cshwidx0 14447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
46 | 44, 45 | sylan2 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
47 | 42, 46 | preq12d 4674 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)}) |
48 | 47 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)})) |
49 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)})) |
50 | 49 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)})) |
51 | 50 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)}) |
52 | | elfzo1elm1fzo0 13416 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ (𝑁 − 1) ∈
(0..^((♯‘𝑊)
− 1))) |
53 | 52 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑁 − 1) ∈
(0..^((♯‘𝑊)
− 1))) |
54 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑁 − 1) → (𝑊‘𝑖) = (𝑊‘(𝑁 − 1))) |
55 | 54 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘𝑖) = (𝑊‘(𝑁 − 1))) |
56 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑁 − 1) → (𝑊‘(𝑖 + 1)) = (𝑊‘((𝑁 − 1) + 1))) |
57 | 18 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ 𝑁 ∈
ℂ) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 𝑁 ∈ ℂ) |
59 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 1 ∈
ℂ) |
60 | 58, 59 | npcand 11266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑁 − 1) + 1) = 𝑁) |
61 | 60 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊‘((𝑁 − 1) + 1)) = (𝑊‘𝑁)) |
62 | 56, 61 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊‘𝑁)) |
63 | 55, 62 | preq12d 4674 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)}) |
64 | 63 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))) |
65 | 53, 64 | rspcdv 3543 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))) |
66 | 65 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)))) |
67 | 66 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))))) |
68 | 67 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))))) |
69 | 68 | com24 95 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))))) |
70 | 69 | 3imp1 1345 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)) |
71 | 51, 70 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)) |
72 | 33, 39, 71 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘(𝑊
cyclShift 𝑁)) −
1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))) |
73 | 72 | expcom 413 |
. . . . . . 7
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ (((𝑊 ∈ Word
(Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧
∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘(𝑊
cyclShift 𝑁)) −
1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))) |
74 | | eqid 2738 |
. . . . . . . 8
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
75 | 1, 74 | isclwwlk 28249 |
. . . . . . 7
⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
76 | 1, 74 | isclwwlk 28249 |
. . . . . . 7
⊢ ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘(𝑊
cyclShift 𝑁)) −
1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))) |
77 | 73, 75, 76 | 3imtr4g 295 |
. . . . . 6
⊢ (𝑁 ∈
(1..^(♯‘𝑊))
→ (𝑊 ∈
(ClWWalks‘𝐺) →
(𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))) |
78 | 12, 77 | sylbir 234 |
. . . . 5
⊢ ((𝑁 ∈
(0..^(♯‘𝑊))
∧ 𝑁 ≠ 0) →
(𝑊 ∈
(ClWWalks‘𝐺) →
(𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))) |
79 | 78 | expcom 413 |
. . . 4
⊢ (𝑁 ≠ 0 → (𝑁 ∈
(0..^(♯‘𝑊))
→ (𝑊 ∈
(ClWWalks‘𝐺) →
(𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))) |
80 | 79 | com13 88 |
. . 3
⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))) |
81 | 80 | imp 406 |
. 2
⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))) |
82 | 11, 81 | pm2.61dne 3030 |
1
⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)) |