MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwws Structured version   Visualization version   GIF version

Theorem clwwisshclwws 28667
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwws ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlkbp 28637 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
3 cshw0 14606 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 0) = 𝑊)
433ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 0) = 𝑊)
54eleq1d 2822 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))
65biimprd 248 . . . . 5 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
72, 6mpcom 38 . . . 4 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺))
8 oveq2 7350 . . . . 5 (𝑁 = 0 → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 0))
98eleq1d 2822 . . . 4 (𝑁 = 0 → ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
107, 9syl5ibrcom 247 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
1110adantr 482 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
12 fzo1fzo0n0 13544 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0))
13 cshwcl 14610 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1413adantr 482 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1615adantr 482 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
17 simpl 484 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word (Vtx‘𝐺))
18 elfzoelz 13493 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
19 cshwlen 14611 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
2017, 18, 19syl2an 597 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
21 hasheq0 14183 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2221bicomd 222 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 = ∅ ↔ (♯‘𝑊) = 0))
2322necon3bid 2986 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ≠ 0))
2423biimpa 478 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ≠ 0)
2524adantr 482 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ≠ 0)
2620, 25eqnetrd 3009 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) ≠ 0)
2714adantr 482 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
28 hasheq0 14183 . . . . . . . . . . . . . 14 ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
3029necon3bid 2986 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) ≠ 0 ↔ (𝑊 cyclShift 𝑁) ≠ ∅))
3126, 30mpbid 231 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
32313ad2antl1 1185 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
3316, 32jca 513 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅))
34173ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
3534anim1i 616 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))))
36 3simpc 1150 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
3736adantr 482 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
38 clwwisshclwwslem 28666 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺)))
3935, 37, 38sylc 65 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺))
40 elfzofz 13509 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊)))
41 lswcshw 14627 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
4240, 41sylan2 594 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
43 fzo0ss1 13523 . . . . . . . . . . . . . . . . 17 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
4443sseli 3932 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (0..^(♯‘𝑊)))
45 cshwidx0 14618 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4644, 45sylan2 594 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4742, 46preq12d 4694 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
4847ex 414 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
4948adantr 482 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
50493ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
5150imp 408 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
52 elfzo1elm1fzo0 13594 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
5352adantl 483 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
54 fveq2 6830 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
5554adantl 483 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
56 fvoveq1 7365 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊‘(𝑖 + 1)) = (𝑊‘((𝑁 − 1) + 1)))
5718zcnd 12533 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
5857adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
59 1cnd 11076 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 1 ∈ ℂ)
6058, 59npcand 11442 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑁 − 1) + 1) = 𝑁)
6160fveq2d 6834 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊‘((𝑁 − 1) + 1)) = (𝑊𝑁))
6256, 61sylan9eqr 2799 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊𝑁))
6355, 62preq12d 4694 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
6463eleq1d 2822 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6553, 64rspcdv 3566 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6665a1d 25 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
6766ex 414 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6867adantr 482 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6968com24 95 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
70693imp1 1347 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
7151, 70eqeltrd 2838 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))
7233, 39, 713jca 1128 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7372expcom 415 . . . . . . 7 (𝑁 ∈ (1..^(♯‘𝑊)) → (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))))
74 eqid 2737 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
751, 74isclwwlk 28636 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
761, 74isclwwlk 28636 . . . . . . 7 ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7773, 75, 763imtr4g 296 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7812, 77sylbir 234 . . . . 5 ((𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7978expcom 415 . . . 4 (𝑁 ≠ 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8079com13 88 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8180imp 408 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
8211, 81pm2.61dne 3029 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  Vcvv 3442  c0 4274  {cpr 4580  cfv 6484  (class class class)co 7342  cc 10975  0cc0 10977  1c1 10978   + caddc 10980  cmin 11311  cz 12425  ...cfz 13345  ..^cfzo 13488  chash 14150  Word cword 14322  lastSclsw 14370   cyclShift ccsh 14600  Vtxcvtx 27655  Edgcedg 27706  ClWWalkscclwwlk 28633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-inf 9305  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-ico 13191  df-fz 13346  df-fzo 13489  df-fl 13618  df-mod 13696  df-hash 14151  df-word 14323  df-lsw 14371  df-concat 14379  df-substr 14453  df-pfx 14483  df-csh 14601  df-clwwlk 28634
This theorem is referenced by:  clwwisshclwwsn  28668
  Copyright terms: Public domain W3C validator