MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwws Structured version   Visualization version   GIF version

Theorem clwwisshclwws 27221
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwws ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlkbp 27191 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
3 cshw0 13819 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 0) = 𝑊)
433ad2ant2 1164 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 0) = 𝑊)
54eleq1d 2829 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))
65biimprd 239 . . . . 5 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
72, 6mpcom 38 . . . 4 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺))
8 oveq2 6850 . . . . 5 (𝑁 = 0 → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 0))
98eleq1d 2829 . . . 4 (𝑁 = 0 → ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
107, 9syl5ibrcom 238 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
1110adantr 472 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
12 fzo1fzo0n0 12727 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0))
13 cshwcl 13825 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1413adantr 472 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1163 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1615adantr 472 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
17 simpl 474 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word (Vtx‘𝐺))
18 elfzoelz 12678 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
19 cshwlen 13827 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
2017, 18, 19syl2an 589 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
21 hasheq0 13356 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2221bicomd 214 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 = ∅ ↔ (♯‘𝑊) = 0))
2322necon3bid 2981 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ≠ 0))
2423biimpa 468 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ≠ 0)
2524adantr 472 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ≠ 0)
2620, 25eqnetrd 3004 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) ≠ 0)
2714adantr 472 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
28 hasheq0 13356 . . . . . . . . . . . . . 14 ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
3029necon3bid 2981 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) ≠ 0 ↔ (𝑊 cyclShift 𝑁) ≠ ∅))
3126, 30mpbid 223 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
32313ad2antl1 1236 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
3316, 32jca 507 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅))
34173ad2ant1 1163 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
3534anim1i 608 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))))
36 3simpc 1182 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
3736adantr 472 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
38 clwwisshclwwslem 27220 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺)))
3935, 37, 38sylc 65 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺))
40 elfzofz 12693 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊)))
41 lswcshw 13846 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
4240, 41sylan2 586 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
43 fzo0ss1 12706 . . . . . . . . . . . . . . . . 17 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
4443sseli 3757 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (0..^(♯‘𝑊)))
45 cshwidx0 13836 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4644, 45sylan2 586 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4742, 46preq12d 4431 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
4847ex 401 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
4948adantr 472 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
50493ad2ant1 1163 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
5150imp 395 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
52 elfzo1elm1fzo0 12777 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
5352adantl 473 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
54 fveq2 6375 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
5554adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
56 fvoveq1 6865 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊‘(𝑖 + 1)) = (𝑊‘((𝑁 − 1) + 1)))
5718zcnd 11730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
5857adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
59 1cnd 10288 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 1 ∈ ℂ)
6058, 59npcand 10650 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑁 − 1) + 1) = 𝑁)
6160fveq2d 6379 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊‘((𝑁 − 1) + 1)) = (𝑊𝑁))
6256, 61sylan9eqr 2821 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊𝑁))
6355, 62preq12d 4431 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
6463eleq1d 2829 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6553, 64rspcdv 3464 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6665a1d 25 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
6766ex 401 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6867adantr 472 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6968com24 95 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
70693imp1 1456 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
7151, 70eqeltrd 2844 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))
7233, 39, 713jca 1158 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7372expcom 402 . . . . . . 7 (𝑁 ∈ (1..^(♯‘𝑊)) → (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))))
74 eqid 2765 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
751, 74isclwwlk 27190 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
761, 74isclwwlk 27190 . . . . . . 7 ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7773, 75, 763imtr4g 287 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7812, 77sylbir 226 . . . . 5 ((𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7978expcom 402 . . . 4 (𝑁 ≠ 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8079com13 88 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8180imp 395 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
8211, 81pm2.61dne 3023 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  c0 4079  {cpr 4336  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cmin 10520  cz 11624  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486  lastSclsw 13533   cyclShift ccsh 13812  Vtxcvtx 26165  Edgcedg 26216  ClWWalkscclwwlk 27187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542  df-substr 13617  df-pfx 13662  df-csh 13813  df-clwwlk 27188
This theorem is referenced by:  clwwisshclwwsn  27222
  Copyright terms: Public domain W3C validator