MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwisshclwws Structured version   Visualization version   GIF version

Theorem clwwisshclwws 30047
Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
clwwisshclwws ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwisshclwws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlkbp 30017 . . . . 5 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅))
3 cshw0 14842 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 0) = 𝑊)
433ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 0) = 𝑊)
54eleq1d 2829 . . . . . 6 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))
65biimprd 248 . . . . 5 ((𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
72, 6mpcom 38 . . . 4 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺))
8 oveq2 7456 . . . . 5 (𝑁 = 0 → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 0))
98eleq1d 2829 . . . 4 (𝑁 = 0 → ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (𝑊 cyclShift 0) ∈ (ClWWalks‘𝐺)))
107, 9syl5ibrcom 247 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
1110adantr 480 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 = 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
12 fzo1fzo0n0 13767 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) ↔ (𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0))
13 cshwcl 14846 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1413adantr 480 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
1615adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
17 simpl 482 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word (Vtx‘𝐺))
18 elfzoelz 13716 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
19 cshwlen 14847 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
2017, 18, 19syl2an 595 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
21 hasheq0 14412 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
2221bicomd 223 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 = ∅ ↔ (♯‘𝑊) = 0))
2322necon3bid 2991 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ≠ 0))
2423biimpa 476 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ≠ 0)
2524adantr 480 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ≠ 0)
2620, 25eqnetrd 3014 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (♯‘(𝑊 cyclShift 𝑁)) ≠ 0)
2714adantr 480 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺))
28 hasheq0 14412 . . . . . . . . . . . . . 14 ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) = 0 ↔ (𝑊 cyclShift 𝑁) = ∅))
3029necon3bid 2991 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((♯‘(𝑊 cyclShift 𝑁)) ≠ 0 ↔ (𝑊 cyclShift 𝑁) ≠ ∅))
3126, 30mpbid 232 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
32313ad2antl1 1185 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ≠ ∅)
3316, 32jca 511 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅))
34173ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
3534anim1i 614 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))))
36 3simpc 1150 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
3736adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
38 clwwisshclwwslem 30046 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺)))
3935, 37, 38sylc 65 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺))
40 elfzofz 13732 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊)))
41 lswcshw 14863 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
4240, 41sylan2 592 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1)))
43 fzo0ss1 13746 . . . . . . . . . . . . . . . . 17 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
4443sseli 4004 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ (0..^(♯‘𝑊)))
45 cshwidx0 14854 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4644, 45sylan2 592 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
4742, 46preq12d 4766 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
4847ex 412 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
4948adantr 480 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
50493ad2ant1 1133 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)}))
5150imp 406 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
52 elfzo1elm1fzo0 13818 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
5352adantl 481 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑁 − 1) ∈ (0..^((♯‘𝑊) − 1)))
54 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
5554adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
56 fvoveq1 7471 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑁 − 1) → (𝑊‘(𝑖 + 1)) = (𝑊‘((𝑁 − 1) + 1)))
5718zcnd 12748 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (1..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
5857adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
59 1cnd 11285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → 1 ∈ ℂ)
6058, 59npcand 11651 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ((𝑁 − 1) + 1) = 𝑁)
6160fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (𝑊‘((𝑁 − 1) + 1)) = (𝑊𝑁))
6256, 61sylan9eqr 2802 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊𝑁))
6355, 62preq12d 4766 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
6463eleq1d 2829 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6553, 64rspcdv 3627 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
6665a1d 25 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
6766ex 412 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6867adantr 480 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (𝑁 ∈ (1..^(♯‘𝑊)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
6968com24 95 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → (𝑁 ∈ (1..^(♯‘𝑊)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
70693imp1 1347 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
7151, 70eqeltrd 2844 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))
7233, 39, 713jca 1128 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ (1..^(♯‘𝑊))) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7372expcom 413 . . . . . . 7 (𝑁 ∈ (1..^(♯‘𝑊)) → (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺))))
74 eqid 2740 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
751, 74isclwwlk 30016 . . . . . . 7 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
761, 74isclwwlk 30016 . . . . . . 7 ((𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 cyclShift 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 cyclShift 𝑁) ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 cyclShift 𝑁)), ((𝑊 cyclShift 𝑁)‘0)} ∈ (Edg‘𝐺)))
7773, 75, 763imtr4g 296 . . . . . 6 (𝑁 ∈ (1..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7812, 77sylbir 235 . . . . 5 ((𝑁 ∈ (0..^(♯‘𝑊)) ∧ 𝑁 ≠ 0) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
7978expcom 413 . . . 4 (𝑁 ≠ 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8079com13 88 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))))
8180imp 406 . 2 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑁 ≠ 0 → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺)))
8211, 81pm2.61dne 3034 1 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  c0 4352  {cpr 4650  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  cz 12639  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610   cyclShift ccsh 14836  Vtxcvtx 29031  Edgcedg 29082  ClWWalkscclwwlk 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837  df-clwwlk 30014
This theorem is referenced by:  clwwisshclwwsn  30048
  Copyright terms: Public domain W3C validator