HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco1 Structured version   Visualization version   GIF version

Theorem homco1 31049
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco1 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ) = (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ)))

Proof of Theorem homco1
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 fvco3 6990 . . . . . 6 ((๐‘ˆ: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)))
213ad2antl3 1187 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)))
3 fvco3 6990 . . . . . . . 8 ((๐‘ˆ: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ)))
433ad2antl3 1187 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ)))
54oveq2d 7424 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ)) = (๐ด ยทโ„Ž (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ))))
6 ffvelcdm 7083 . . . . . . . . . 10 ((๐‘ˆ: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (๐‘ˆโ€˜๐‘ฅ) โˆˆ โ„‹)
7 homval 30989 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ˆโ€˜๐‘ฅ) โˆˆ โ„‹) โ†’ ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)) = (๐ด ยทโ„Ž (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ))))
86, 7syl3an3 1165 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ˆ: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹)) โ†’ ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)) = (๐ด ยทโ„Ž (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ))))
983expa 1118 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โˆง (๐‘ˆ: โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹)) โ†’ ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)) = (๐ด ยทโ„Ž (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ))))
109exp43 437 . . . . . . 7 (๐ด โˆˆ โ„‚ โ†’ (๐‘‡: โ„‹โŸถ โ„‹ โ†’ (๐‘ˆ: โ„‹โŸถ โ„‹ โ†’ (๐‘ฅ โˆˆ โ„‹ โ†’ ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)) = (๐ด ยทโ„Ž (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ)))))))
11103imp1 1347 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)) = (๐ด ยทโ„Ž (๐‘‡โ€˜(๐‘ˆโ€˜๐‘ฅ))))
125, 11eqtr4d 2775 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ)) = ((๐ด ยทop ๐‘‡)โ€˜(๐‘ˆโ€˜๐‘ฅ)))
132, 12eqtr4d 2775 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ)))
14 fco 6741 . . . . . . . 8 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ (๐‘‡ โˆ˜ ๐‘ˆ): โ„‹โŸถ โ„‹)
15 homval 30989 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง (๐‘‡ โˆ˜ ๐‘ˆ): โ„‹โŸถ โ„‹ โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) = (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ)))
1614, 15syl3an2 1164 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) = (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ)))
17163expia 1121 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹)) โ†’ (๐‘ฅ โˆˆ โ„‹ โ†’ ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) = (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ))))
18173impb 1115 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ (๐‘ฅ โˆˆ โ„‹ โ†’ ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) = (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ))))
1918imp 407 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) = (๐ด ยทโ„Ž ((๐‘‡ โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ)))
2013, 19eqtr4d 2775 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โˆง ๐‘ฅ โˆˆ โ„‹) โ†’ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ))
2120ralrimiva 3146 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ โˆ€๐‘ฅ โˆˆ โ„‹ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ))
22 homulcl 31007 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹) โ†’ (๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹)
23 fco 6741 . . . 4 (((๐ด ยทop ๐‘‡): โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ): โ„‹โŸถ โ„‹)
2422, 23stoic3 1778 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ): โ„‹โŸถ โ„‹)
25 homulcl 31007 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง (๐‘‡ โˆ˜ ๐‘ˆ): โ„‹โŸถ โ„‹) โ†’ (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ)): โ„‹โŸถ โ„‹)
2614, 25sylan2 593 . . . 4 ((๐ด โˆˆ โ„‚ โˆง (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹)) โ†’ (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ)): โ„‹โŸถ โ„‹)
27263impb 1115 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ)): โ„‹โŸถ โ„‹)
28 hoeq 31008 . . 3 ((((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ): โ„‹โŸถ โ„‹ โˆง (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ)): โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) โ†” ((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ) = (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))))
2924, 27, 28syl2anc 584 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ (((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ)โ€˜๐‘ฅ) = ((๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))โ€˜๐‘ฅ) โ†” ((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ) = (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ))))
3021, 29mpbid 231 1 ((๐ด โˆˆ โ„‚ โˆง ๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ˆ: โ„‹โŸถ โ„‹) โ†’ ((๐ด ยทop ๐‘‡) โˆ˜ ๐‘ˆ) = (๐ด ยทop (๐‘‡ โˆ˜ ๐‘ˆ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  โˆ€wral 3061   โˆ˜ ccom 5680  โŸถwf 6539  โ€˜cfv 6543  (class class class)co 7408  โ„‚cc 11107   โ„‹chba 30167   ยทโ„Ž csm 30169   ยทop chot 30187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-hilex 30247  ax-hfvmul 30253
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-homul 30979
This theorem is referenced by:  opsqrlem1  31388
  Copyright terms: Public domain W3C validator