HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco1 Structured version   Visualization version   GIF version

Theorem homco1 29359
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 6588 . . . . . 6 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
213ad2antl3 1167 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
3 fvco3 6588 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
433ad2antl3 1167 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
54oveq2d 6992 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
6 ffvelrn 6674 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
7 homval 29299 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈𝑥) ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
86, 7syl3an3 1145 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
983expa 1098 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
109exp43 429 . . . . . . 7 (𝐴 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑈: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥)))))))
11103imp1 1327 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
125, 11eqtr4d 2817 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
132, 12eqtr4d 2817 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
14 fco 6361 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
15 homval 29299 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
1614, 15syl3an2 1144 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
17163expia 1101 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
18173impb 1095 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
1918imp 398 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
2013, 19eqtr4d 2817 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2120ralrimiva 3132 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
22 homulcl 29317 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 fco 6361 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
2422, 23stoic3 1739 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
25 homulcl 29317 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
2614, 25sylan2 583 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
27263impb 1095 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
28 hoeq 29318 . . 3 ((((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
2924, 27, 28syl2anc 576 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
3021, 29mpbid 224 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  ccom 5411  wf 6184  cfv 6188  (class class class)co 6976  cc 10333  chba 28475   · csm 28477   ·op chot 28495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-hilex 28555  ax-hfvmul 28561
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-map 8208  df-homul 29289
This theorem is referenced by:  opsqrlem1  29698
  Copyright terms: Public domain W3C validator