HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco1 Structured version   Visualization version   GIF version

Theorem homco1 30064
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 6849 . . . . . 6 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
213ad2antl3 1185 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
3 fvco3 6849 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
433ad2antl3 1185 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
54oveq2d 7271 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
6 ffvelrn 6941 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
7 homval 30004 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈𝑥) ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
86, 7syl3an3 1163 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
983expa 1116 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
109exp43 436 . . . . . . 7 (𝐴 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑈: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥)))))))
11103imp1 1345 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
125, 11eqtr4d 2781 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
132, 12eqtr4d 2781 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
14 fco 6608 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
15 homval 30004 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
1614, 15syl3an2 1162 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
17163expia 1119 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
18173impb 1113 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
1918imp 406 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
2013, 19eqtr4d 2781 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2120ralrimiva 3107 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
22 homulcl 30022 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 fco 6608 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
2422, 23stoic3 1780 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
25 homulcl 30022 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
2614, 25sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
27263impb 1113 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
28 hoeq 30023 . . 3 ((((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
2924, 27, 28syl2anc 583 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
3021, 29mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  chba 29182   · csm 29184   ·op chot 29202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-hilex 29262  ax-hfvmul 29268
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-homul 29994
This theorem is referenced by:  opsqrlem1  30403
  Copyright terms: Public domain W3C validator