HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco1 Structured version   Visualization version   GIF version

Theorem homco1 29572
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 6754 . . . . . 6 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
213ad2antl3 1183 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
3 fvco3 6754 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
433ad2antl3 1183 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
54oveq2d 7166 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
6 ffvelrn 6843 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
7 homval 29512 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈𝑥) ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
86, 7syl3an3 1161 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
983expa 1114 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
109exp43 439 . . . . . . 7 (𝐴 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑈: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥)))))))
11103imp1 1343 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
125, 11eqtr4d 2859 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
132, 12eqtr4d 2859 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
14 fco 6525 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
15 homval 29512 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
1614, 15syl3an2 1160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
17163expia 1117 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
18173impb 1111 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
1918imp 409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
2013, 19eqtr4d 2859 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2120ralrimiva 3182 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
22 homulcl 29530 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 fco 6525 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
2422, 23stoic3 1773 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
25 homulcl 29530 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
2614, 25sylan2 594 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
27263impb 1111 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
28 hoeq 29531 . . 3 ((((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
2924, 27, 28syl2anc 586 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
3021, 29mpbid 234 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  chba 28690   · csm 28692   ·op chot 28710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-hilex 28770  ax-hfvmul 28776
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-homul 29502
This theorem is referenced by:  opsqrlem1  29911
  Copyright terms: Public domain W3C validator