MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivge1le Structured version   Visualization version   GIF version

Theorem ledivge1le 12987
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 12986 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
21adantr 482 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
3 rerpdivcl 12946 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
43adantr 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
5 1red 11157 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℝ)
6 rpre 12924 . . . . . . . . . . 11 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
76adantl 483 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
8 letr 11250 . . . . . . . . . 10 (((𝐴 / 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
94, 5, 7, 8syl3anc 1372 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (((𝐴 / 𝐵) ≤ 1 ∧ 1 ≤ 𝐶) → (𝐴 / 𝐵) ≤ 𝐶))
109expd 417 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
112, 10sylbird 260 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 → (1 ≤ 𝐶 → (𝐴 / 𝐵) ≤ 𝐶)))
1211com23 86 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ 𝐶 ∈ ℝ+) → (1 ≤ 𝐶 → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1312expimpd 455 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶)))
1413ex 414 . . . 4 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ+ → ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐴𝐵 → (𝐴 / 𝐵) ≤ 𝐶))))
15143imp1 1348 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 𝐶)
16 simp1 1137 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → 𝐴 ∈ ℝ)
176adantr 482 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 𝐶 ∈ ℝ)
18 0lt1 11678 . . . . . . . . . 10 0 < 1
19 0red 11159 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 0 ∈ ℝ)
20 1red 11157 . . . . . . . . . . 11 (𝐶 ∈ ℝ+ → 1 ∈ ℝ)
21 ltletr 11248 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2219, 20, 6, 21syl3anc 1372 . . . . . . . . . 10 (𝐶 ∈ ℝ+ → ((0 < 1 ∧ 1 ≤ 𝐶) → 0 < 𝐶))
2318, 22mpani 695 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (1 ≤ 𝐶 → 0 < 𝐶))
2423imp 408 . . . . . . . 8 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → 0 < 𝐶)
2517, 24jca 513 . . . . . . 7 ((𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
26253ad2ant3 1136 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
27 rpregt0 12930 . . . . . . 7 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
28273ad2ant2 1135 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2916, 26, 283jca 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
3029adantr 482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)))
31 lediv23 12048 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3230, 31syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 / 𝐶) ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐶))
3315, 32mpbird 257 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 / 𝐶) ≤ 𝐵)
3433ex 414 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107   class class class wbr 5106  (class class class)co 7358  cr 11051  0cc0 11052  1c1 11053   < clt 11190  cle 11191   / cdiv 11813  +crp 12916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-rp 12917
This theorem is referenced by:  gausslemma2dlem1a  26716
  Copyright terms: Public domain W3C validator