![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzge0nn0 | Structured version Visualization version GIF version |
Description: If an integer is greater than or equal to a nonnegative integer, then it is a nonnegative integer. (Contributed by Alexander van der Vekens, 27-Aug-2018.) |
Ref | Expression |
---|---|
eluzge0nn0 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (0 ≤ 𝑀 → 𝑁 ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12104 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | simpl2 1185 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ 0 ≤ 𝑀) → 𝑁 ∈ ℤ) | |
3 | zre 11838 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
4 | zre 11838 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | 0red 10495 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ) | |
6 | simpl 483 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℝ) | |
7 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ) | |
8 | 5, 6, 7 | 3jca 1121 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
9 | 3, 4, 8 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
10 | letr 10586 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁) → 0 ≤ 𝑁)) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁) → 0 ≤ 𝑁)) |
12 | 11 | expcomd 417 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 → (0 ≤ 𝑀 → 0 ≤ 𝑁))) |
13 | 12 | ex 413 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ≤ 𝑁 → (0 ≤ 𝑀 → 0 ≤ 𝑁)))) |
14 | 13 | 3imp1 1340 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ 0 ≤ 𝑀) → 0 ≤ 𝑁) |
15 | elnn0z 11847 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
16 | 2, 14, 15 | sylanbrc 583 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ∧ 0 ≤ 𝑀) → 𝑁 ∈ ℕ0) |
17 | 16 | ex 413 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (0 ≤ 𝑀 → 𝑁 ∈ ℕ0)) |
18 | 1, 17 | sylbi 218 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (0 ≤ 𝑀 → 𝑁 ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2081 class class class wbr 4966 ‘cfv 6230 ℝcr 10387 0cc0 10388 ≤ cle 10527 ℕ0cn0 11750 ℤcz 11834 ℤ≥cuz 12098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-n0 11751 df-z 11835 df-uz 12099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |