Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrsym Structured version   Visualization version   GIF version

Theorem isomgrsym 44354
Description: The isomorphy relation is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgrsym ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐴 IsomGr 𝐵𝐵 IsomGr 𝐴))

Proof of Theorem isomgrsym
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Vtx‘𝐴) = (Vtx‘𝐴)
2 eqid 2798 . . 3 (Vtx‘𝐵) = (Vtx‘𝐵)
3 eqid 2798 . . 3 (iEdg‘𝐴) = (iEdg‘𝐴)
4 eqid 2798 . . 3 (iEdg‘𝐵) = (iEdg‘𝐵)
51, 2, 3, 4isomgr 44341 . 2 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
6 vex 3444 . . . . . . . 8 𝑓 ∈ V
76cnvex 7612 . . . . . . 7 𝑓 ∈ V
87a1i 11 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → 𝑓 ∈ V)
9 f1ocnv 6602 . . . . . . . . 9 (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → 𝑓:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴))
109adantr 484 . . . . . . . 8 ((𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) → 𝑓:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴))
1110adantl 485 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → 𝑓:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴))
12 vex 3444 . . . . . . . . . . . . . 14 𝑔 ∈ V
1312cnvex 7612 . . . . . . . . . . . . 13 𝑔 ∈ V
1413a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → 𝑔 ∈ V)
15 f1ocnv 6602 . . . . . . . . . . . . . . 15 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → 𝑔:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴))
1615adantr 484 . . . . . . . . . . . . . 14 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → 𝑔:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴))
17163ad2ant2 1131 . . . . . . . . . . . . 13 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → 𝑔:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴))
18 f1ocnvdm 7019 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (𝑔𝑗) ∈ dom (iEdg‘𝐴))
19183ad2antl2 1183 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (𝑔𝑗) ∈ dom (iEdg‘𝐴))
20 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = (𝑔𝑗) → ((iEdg‘𝐴)‘𝑖) = ((iEdg‘𝐴)‘(𝑔𝑗)))
2120imaeq2d 5896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = (𝑔𝑗) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))))
22 2fveq3 6650 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = (𝑔𝑗) → ((iEdg‘𝐵)‘(𝑔𝑖)) = ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗))))
2321, 22eqeq12d 2814 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = (𝑔𝑗) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗)))))
2423adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) ∧ 𝑖 = (𝑔𝑗)) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗)))))
2519, 24rspcdv 3563 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗)))))
26 f1ocnvfv2 7012 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (𝑔‘(𝑔𝑗)) = 𝑗)
27263ad2antl2 1183 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (𝑔‘(𝑔𝑗)) = 𝑗)
2827fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗))
2928eqeq2d 2809 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗))) ↔ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗)))
30 f1of1 6589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → 𝑓:(Vtx‘𝐴)–1-1→(Vtx‘𝐵))
31303ad2ant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → 𝑓:(Vtx‘𝐴)–1-1→(Vtx‘𝐵))
3231adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → 𝑓:(Vtx‘𝐴)–1-1→(Vtx‘𝐵))
33 simpl1l 1221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → 𝐴 ∈ UHGraph)
341, 3uhgrss 26857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ UHGraph ∧ (𝑔𝑗) ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(𝑔𝑗)) ⊆ (Vtx‘𝐴))
3533, 19, 34syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → ((iEdg‘𝐴)‘(𝑔𝑗)) ⊆ (Vtx‘𝐴))
3632, 35jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (𝑓:(Vtx‘𝐴)–1-1→(Vtx‘𝐵) ∧ ((iEdg‘𝐴)‘(𝑔𝑗)) ⊆ (Vtx‘𝐴)))
3736adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) ∧ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗)) → (𝑓:(Vtx‘𝐴)–1-1→(Vtx‘𝐵) ∧ ((iEdg‘𝐴)‘(𝑔𝑗)) ⊆ (Vtx‘𝐴)))
38 f1imacnv 6606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:(Vtx‘𝐴)–1-1→(Vtx‘𝐵) ∧ ((iEdg‘𝐴)‘(𝑔𝑗)) ⊆ (Vtx‘𝐴)) → (𝑓 “ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗)))) = ((iEdg‘𝐴)‘(𝑔𝑗)))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) ∧ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗)) → (𝑓 “ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗)))) = ((iEdg‘𝐴)‘(𝑔𝑗)))
40 imaeq2 5892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗) → (𝑓 “ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗)))) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))
4140adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) ∧ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗)) → (𝑓 “ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗)))) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))
4239, 41eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) ∧ (𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗)) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))
4342ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘𝑗) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗))))
4429, 43sylbid 243 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘(𝑔𝑗))) = ((iEdg‘𝐵)‘(𝑔‘(𝑔𝑗))) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗))))
4525, 44syld 47 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗))))
4645ex 416 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → (𝑗 ∈ dom (iEdg‘𝐵) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))))
4746com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ 𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → (𝑗 ∈ dom (iEdg‘𝐵) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))))
48473exp 1116 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → (𝑗 ∈ dom (iEdg‘𝐵) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))))))
4948com34 91 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐵) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))))))
5049impd 414 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐵) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗))))))
51503imp1 1344 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → ((iEdg‘𝐴)‘(𝑔𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))
5251eqcomd 2804 . . . . . . . . . . . . . 14 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) ∧ 𝑗 ∈ dom (iEdg‘𝐵)) → (𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗)))
5352ralrimiva 3149 . . . . . . . . . . . . 13 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗)))
5417, 53jca 515 . . . . . . . . . . . 12 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → (𝑔:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗))))
55 f1oeq1 6579 . . . . . . . . . . . . 13 ( = 𝑔 → (:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ↔ 𝑔:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴)))
56 fveq1 6644 . . . . . . . . . . . . . . . 16 ( = 𝑔 → (𝑗) = (𝑔𝑗))
5756fveq2d 6649 . . . . . . . . . . . . . . 15 ( = 𝑔 → ((iEdg‘𝐴)‘(𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗)))
5857eqeq2d 2809 . . . . . . . . . . . . . 14 ( = 𝑔 → ((𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)) ↔ (𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗))))
5958ralbidv 3162 . . . . . . . . . . . . 13 ( = 𝑔 → (∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)) ↔ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗))))
6055, 59anbi12d 633 . . . . . . . . . . . 12 ( = 𝑔 → ((:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))) ↔ (𝑔:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑔𝑗)))))
6114, 54, 60spcedv 3547 . . . . . . . . . . 11 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) → ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))
62613exp 1116 . . . . . . . . . 10 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
6362exlimdv 1934 . . . . . . . . 9 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
6463com23 86 . . . . . . . 8 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) → (∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
6564imp32 422 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))
6611, 65jca 515 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → (𝑓:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)))))
67 f1oeq1 6579 . . . . . . 7 (𝑒 = 𝑓 → (𝑒:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ↔ 𝑓:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴)))
68 imaeq1 5891 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ((iEdg‘𝐵)‘𝑗)) = (𝑓 “ ((iEdg‘𝐵)‘𝑗)))
6968eqeq1d 2800 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)) ↔ (𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))
7069ralbidv 3162 . . . . . . . . 9 (𝑒 = 𝑓 → (∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)) ↔ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))
7170anbi2d 631 . . . . . . . 8 (𝑒 = 𝑓 → ((:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))) ↔ (:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)))))
7271exbidv 1922 . . . . . . 7 (𝑒 = 𝑓 → (∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))) ↔ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)))))
7367, 72anbi12d 633 . . . . . 6 (𝑒 = 𝑓 → ((𝑒:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)))) ↔ (𝑓:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑓 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
748, 66, 73spcedv 3547 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → ∃𝑒(𝑒:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗)))))
752, 1, 4, 3isomgr 44341 . . . . . . 7 ((𝐵𝑌𝐴 ∈ UHGraph) → (𝐵 IsomGr 𝐴 ↔ ∃𝑒(𝑒:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
7675ancoms 462 . . . . . 6 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐵 IsomGr 𝐴 ↔ ∃𝑒(𝑒:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
7776adantr 484 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → (𝐵 IsomGr 𝐴 ↔ ∃𝑒(𝑒:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐴) ∧ ∃(:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐴) ∧ ∀𝑗 ∈ dom (iEdg‘𝐵)(𝑒 “ ((iEdg‘𝐵)‘𝑗)) = ((iEdg‘𝐴)‘(𝑗))))))
7874, 77mpbird 260 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))) → 𝐵 IsomGr 𝐴)
7978ex 416 . . 3 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → ((𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) → 𝐵 IsomGr 𝐴))
8079exlimdv 1934 . 2 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) → 𝐵 IsomGr 𝐴))
815, 80sylbid 243 1 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐴 IsomGr 𝐵𝐵 IsomGr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3106  Vcvv 3441  wss 3881   class class class wbr 5030  ccnv 5518  dom cdm 5519  cima 5522  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  UHGraphcuhgr 26849   IsomGr cisomgr 44337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-uhgr 26851  df-isomgr 44339
This theorem is referenced by:  isomgrsymb  44355
  Copyright terms: Public domain W3C validator