MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difreicc Structured version   Visualization version   GIF version

Theorem difreicc 12970
Description: The class difference of and a closed interval. (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
difreicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))

Proof of Theorem difreicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3863 . . 3 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
2 rexr 10777 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3 rexr 10777 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 elicc1 12877 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
52, 3, 4syl2an 599 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
65adantr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
76notbid 321 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8 3anass 1096 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
98notbii 323 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
10 ianor 981 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)))
11 rexr 10777 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1211pm2.24d 154 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
1312adantl 485 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
14 ianor 981 . . . . . . . . . . 11 (¬ (𝐴𝑥𝑥𝐵) ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
1511ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
16 mnflt 12613 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → -∞ < 𝑥)
1716ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → -∞ < 𝑥)
18 simpr 488 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
19 simpll 767 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 ltnle 10810 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2120bicomd 226 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2218, 19, 21syl2anc 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2322biimpa 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 < 𝐴)
24 mnfxr 10788 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
252ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
26 elioo1 12873 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2724, 25, 26sylancr 590 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2815, 17, 23, 27mpbir3and 1343 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (-∞(,)𝐴))
2928ex 416 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 ∈ (-∞(,)𝐴)))
30 ltnle 10810 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3130adantll 714 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3211ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
33 simpr 488 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
34 ltpnf 12610 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 < +∞)
3534ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 < +∞)
363ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
37 pnfxr 10785 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
38 elioo1 12873 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
3936, 37, 38sylancl 589 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
4032, 33, 35, 39mpbir3and 1343 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ (𝐵(,)+∞))
4140ex 416 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥𝑥 ∈ (𝐵(,)+∞)))
4231, 41sylbird 263 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝐵𝑥 ∈ (𝐵(,)+∞)))
4329, 42orim12d 964 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4414, 43syl5bi 245 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4513, 44jaod 858 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4610, 45syl5bi 245 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
479, 46syl5bi 245 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
487, 47sylbid 243 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4948expimpd 457 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
50 elun 4049 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)))
5149, 50syl6ibr 255 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
52 ioossre 12894 . . . . . . . . 9 (-∞(,)𝐴) ⊆ ℝ
53 ioossre 12894 . . . . . . . . 9 (𝐵(,)+∞) ⊆ ℝ
5452, 53unssi 4085 . . . . . . . 8 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ⊆ ℝ
5554sseli 3883 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → 𝑥 ∈ ℝ)
5655adantl 485 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑥 ∈ ℝ)
57 elioo2 12874 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5824, 2, 57sylancr 590 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5958adantr 484 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
6020biimpd 232 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴𝑥))
6160ex 416 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 (-∞ < 𝑥 → (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6362com13 88 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6463adantr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
65643impd 1349 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴) → ¬ 𝐴𝑥))
6659, 65sylbid 243 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) → ¬ 𝐴𝑥))
673adantl 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
6867, 37, 38sylancl 589 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
69 xrltnle 10798 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
7069biimpd 232 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 → ¬ 𝑥𝐵))
7170ex 416 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → ¬ 𝑥𝐵)))
7271a1ddd 80 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
733, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
7473adantl 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
75743impd 1349 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞) → ¬ 𝑥𝐵))
7668, 75sylbid 243 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) → ¬ 𝑥𝐵))
7766, 76orim12d 964 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
7850, 77syl5bi 245 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
7978imp 410 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
8079, 14sylibr 237 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝐴𝑥𝑥𝐵))
8180intnand 492 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
8281, 8sylnibr 332 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵))
832, 3anim12i 616 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
8483adantr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
854notbid 321 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8684, 85syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8782, 86mpbird 260 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
8856, 87jca 515 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
8988ex 416 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵))))
9051, 89impbid 215 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
911, 90syl5bb 286 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
9291eqrdv 2737 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  cdif 3850  cun 3851   class class class wbr 5040  (class class class)co 7182  cr 10626  +∞cpnf 10762  -∞cmnf 10763  *cxr 10764   < clt 10765  cle 10766  (,)cioo 12833  [,]cicc 12836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-pre-lttri 10701  ax-pre-lttrn 10702
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7185  df-oprab 7186  df-mpo 7187  df-1st 7726  df-2nd 7727  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-ioo 12837  df-icc 12840
This theorem is referenced by:  icccld  23531  iccmbl  24330  mbfimaicc  24395  icccncfext  43010
  Copyright terms: Public domain W3C validator