MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difreicc Structured version   Visualization version   GIF version

Theorem difreicc 12516
Description: The class difference of and a closed interval. (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
difreicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))

Proof of Theorem difreicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3744 . . 3 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
2 rexr 10343 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3 rexr 10343 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 elicc1 12426 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
52, 3, 4syl2an 589 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
65adantr 472 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
76notbid 309 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8 3anass 1116 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
98notbii 311 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
10 ianor 1004 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)))
11 rexr 10343 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1211pm2.24d 148 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
1312adantl 473 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
14 ianor 1004 . . . . . . . . . . 11 (¬ (𝐴𝑥𝑥𝐵) ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
1511ad2antlr 718 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
16 mnflt 12162 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → -∞ < 𝑥)
1716ad2antlr 718 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → -∞ < 𝑥)
18 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
19 simpll 783 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 ltnle 10375 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2120bicomd 214 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2218, 19, 21syl2anc 579 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2322biimpa 468 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 < 𝐴)
24 mnfxr 10354 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
252ad3antrrr 721 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
26 elioo1 12422 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2724, 25, 26sylancr 581 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2815, 17, 23, 27mpbir3and 1442 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (-∞(,)𝐴))
2928ex 401 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 ∈ (-∞(,)𝐴)))
30 ltnle 10375 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3130adantll 705 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3211ad2antlr 718 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
33 simpr 477 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
34 ltpnf 12159 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 < +∞)
3534ad2antlr 718 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 < +∞)
363ad3antlr 722 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
37 pnfxr 10350 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
38 elioo1 12422 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
3936, 37, 38sylancl 580 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
4032, 33, 35, 39mpbir3and 1442 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ (𝐵(,)+∞))
4140ex 401 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥𝑥 ∈ (𝐵(,)+∞)))
4231, 41sylbird 251 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝐵𝑥 ∈ (𝐵(,)+∞)))
4329, 42orim12d 987 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4414, 43syl5bi 233 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4513, 44jaod 885 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4610, 45syl5bi 233 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
479, 46syl5bi 233 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
487, 47sylbid 231 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4948expimpd 445 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
50 elun 3917 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)))
5149, 50syl6ibr 243 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
52 ioossre 12442 . . . . . . . . 9 (-∞(,)𝐴) ⊆ ℝ
53 ioossre 12442 . . . . . . . . 9 (𝐵(,)+∞) ⊆ ℝ
5452, 53unssi 3952 . . . . . . . 8 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ⊆ ℝ
5554sseli 3759 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → 𝑥 ∈ ℝ)
5655adantl 473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑥 ∈ ℝ)
57 elioo2 12423 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5824, 2, 57sylancr 581 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5958adantr 472 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
6020biimpd 220 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴𝑥))
6160ex 401 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 (-∞ < 𝑥 → (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6362com13 88 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6463adantr 472 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
65643impd 1457 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴) → ¬ 𝐴𝑥))
6659, 65sylbid 231 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) → ¬ 𝐴𝑥))
673adantl 473 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
6867, 37, 38sylancl 580 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
69 xrltnle 10363 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
7069biimpd 220 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 → ¬ 𝑥𝐵))
7170ex 401 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → ¬ 𝑥𝐵)))
7271com3l 89 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝐵 ∈ ℝ* → ¬ 𝑥𝐵)))
7372a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 < +∞ → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝐵 ∈ ℝ* → ¬ 𝑥𝐵))))
7473com14 96 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
753, 74syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
7675adantl 473 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
77763impd 1457 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞) → ¬ 𝑥𝐵))
7868, 77sylbid 231 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) → ¬ 𝑥𝐵))
7966, 78orim12d 987 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
8050, 79syl5bi 233 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
8180imp 395 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
8281, 14sylibr 225 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝐴𝑥𝑥𝐵))
8382intnand 482 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
8483, 8sylnibr 320 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵))
852, 3anim12i 606 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
8685adantr 472 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
874notbid 309 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8886, 87syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8984, 88mpbird 248 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
9056, 89jca 507 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
9190ex 401 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵))))
9251, 91impbid 203 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
931, 92syl5bb 274 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
9493eqrdv 2763 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  cdif 3731  cun 3732   class class class wbr 4811  (class class class)co 6846  cr 10192  +∞cpnf 10329  -∞cmnf 10330  *cxr 10331   < clt 10332  cle 10333  (,)cioo 12382  [,]cicc 12385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-pre-lttri 10267  ax-pre-lttrn 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-ioo 12386  df-icc 12389
This theorem is referenced by:  icccld  22863  iccmbl  23638  mbfimaicc  23703  icccncfext  40762
  Copyright terms: Public domain W3C validator