MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difreicc Structured version   Visualization version   GIF version

Theorem difreicc 13465
Description: The class difference of and a closed interval. (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
difreicc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))

Proof of Theorem difreicc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3957 . . 3 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
2 rexr 11264 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
3 rexr 11264 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 elicc1 13372 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
52, 3, 4syl2an 594 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
65adantr 479 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
76notbid 317 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8 3anass 1093 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
98notbii 319 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) ↔ ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
10 ianor 978 . . . . . . . . 9 (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)))
11 rexr 11264 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1211pm2.24d 151 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
1312adantl 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
14 ianor 978 . . . . . . . . . . 11 (¬ (𝐴𝑥𝑥𝐵) ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
1511ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ ℝ*)
16 mnflt 13107 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → -∞ < 𝑥)
1716ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → -∞ < 𝑥)
18 simpr 483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
19 simpll 763 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
20 ltnle 11297 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2120bicomd 222 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2218, 19, 21syl2anc 582 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 < 𝐴))
2322biimpa 475 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 < 𝐴)
24 mnfxr 11275 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
252ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝐴 ∈ ℝ*)
26 elioo1 13368 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2724, 25, 26sylancr 585 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ < 𝑥𝑥 < 𝐴)))
2815, 17, 23, 27mpbir3and 1340 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝐴𝑥) → 𝑥 ∈ (-∞(,)𝐴))
2928ex 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝐴𝑥𝑥 ∈ (-∞(,)𝐴)))
30 ltnle 11297 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3130adantll 710 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
3211ad2antlr 723 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
33 simpr 483 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
34 ltpnf 13104 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 < +∞)
3534ad2antlr 723 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 < +∞)
363ad3antlr 727 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
37 pnfxr 11272 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
38 elioo1 13368 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
3936, 37, 38sylancl 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
4032, 33, 35, 39mpbir3and 1340 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ (𝐵(,)+∞))
4140ex 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥𝑥 ∈ (𝐵(,)+∞)))
4231, 41sylbird 259 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝐵𝑥 ∈ (𝐵(,)+∞)))
4329, 42orim12d 961 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4414, 43biimtrid 241 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4513, 44jaod 855 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((¬ 𝑥 ∈ ℝ* ∨ ¬ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4610, 45biimtrid 241 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
479, 46biimtrid 241 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
487, 47sylbid 239 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐴[,]𝐵) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
4948expimpd 452 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞))))
50 elun 4147 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)))
5149, 50imbitrrdi 251 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
52 ioossre 13389 . . . . . . . . 9 (-∞(,)𝐴) ⊆ ℝ
53 ioossre 13389 . . . . . . . . 9 (𝐵(,)+∞) ⊆ ℝ
5452, 53unssi 4184 . . . . . . . 8 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ⊆ ℝ
5554sseli 3977 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → 𝑥 ∈ ℝ)
5655adantl 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → 𝑥 ∈ ℝ)
57 elioo2 13369 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5824, 2, 57sylancr 585 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
5958adantr 479 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴)))
6020biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 < 𝐴 → ¬ 𝐴𝑥))
6160ex 411 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 (-∞ < 𝑥 → (𝑥 ∈ ℝ → (𝐴 ∈ ℝ → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6362com13 88 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
6463adantr 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ → (-∞ < 𝑥 → (𝑥 < 𝐴 → ¬ 𝐴𝑥))))
65643impd 1346 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐴) → ¬ 𝐴𝑥))
6659, 65sylbid 239 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) → ¬ 𝐴𝑥))
673adantl 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
6867, 37, 38sylancl 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) ↔ (𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞)))
69 xrltnle 11285 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 ↔ ¬ 𝑥𝐵))
7069biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵 < 𝑥 → ¬ 𝑥𝐵))
7170ex 411 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → ¬ 𝑥𝐵)))
7271a1ddd 80 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
733, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
7473adantl 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → (𝑥 < +∞ → ¬ 𝑥𝐵))))
75743impd 1346 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ*𝐵 < 𝑥𝑥 < +∞) → ¬ 𝑥𝐵))
7668, 75sylbid 239 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐵(,)+∞) → ¬ 𝑥𝐵))
7766, 76orim12d 961 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
7850, 77biimtrid 241 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵)))
7978imp 405 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
8079, 14sylibr 233 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝐴𝑥𝑥𝐵))
8180intnand 487 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ* ∧ (𝐴𝑥𝑥𝐵)))
8281, 8sylnibr 328 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵))
832, 3anim12i 611 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
8483adantr 479 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
854notbid 317 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8684, 85syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (¬ 𝑥 ∈ (𝐴[,]𝐵) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
8782, 86mpbird 256 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
8856, 87jca 510 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)))
8988ex 411 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) → (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵))))
9051, 89impbid 211 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
911, 90bitrid 282 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐵(,)+∞))))
9291eqrdv 2728 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  cdif 3944  cun 3945   class class class wbr 5147  (class class class)co 7411  cr 11111  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251   < clt 11252  cle 11253  (,)cioo 13328  [,]cicc 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-ioo 13332  df-icc 13335
This theorem is referenced by:  icccld  24503  iccmbl  25315  mbfimaicc  25380  icccncfext  44901
  Copyright terms: Public domain W3C validator