Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem2 Structured version   Visualization version   GIF version

Theorem areacirclem2 37749
Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 resqcl 14026 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑅↑2) ∈ ℝ)
32adantr 480 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
4 renegcl 11419 . . . . . . . . . 10 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5 iccssre 13324 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 5mpancom 688 . . . . . . . . 9 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
76sselda 3929 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
87resqcld 14027 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
98adantlr 715 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
103, 9resubcld 11540 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
11 elicc2 13306 . . . . . . . . 9 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
124, 11mpancom 688 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1312adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1413ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
15 resqcl 14026 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
16153ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1714, 16subge0d 11702 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
18 absresq 15204 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
19183ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
2019breq1d 5096 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2117, 20bitr4d 282 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
22 recn 11091 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322abscld 15341 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
24233ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
25 simp1 1136 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
2622absge0d 15349 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
27263ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
28 simp2 1137 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2924, 25, 27, 28le2sqd 14159 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
30 simp3 1138 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
3130, 25absled 15335 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
3221, 29, 313bitr2d 307 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
3332biimprd 248 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
34333expa 1118 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3534exp4b 430 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
36353impd 1349 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3713, 36sylbid 240 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3837imp 406 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
39 elrege0 13349 . . . . 5 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) ↔ (((𝑅↑2) − (𝑡↑2)) ∈ ℝ ∧ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
4010, 38, 39sylanbrc 583 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
41 fvres 6836 . . . 4 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4240, 41syl 17 . . 3 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4342mpteq2dva 5179 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))))
44 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 24692 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
46 ax-resscn 11058 . . . . . . 7 ℝ ⊆ ℂ
476, 46sstrdi 3942 . . . . . 6 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℂ)
48 resttopon 23071 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
4945, 47, 48sylancr 587 . . . . 5 (𝑅 ∈ ℝ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5049adantr 480 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5147resmptd 5984 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))))
5245a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
53 recn 11091 . . . . . . . . . . 11 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
5453sqcld 14046 . . . . . . . . . 10 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
5552, 52, 54cnmptc 23572 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑅↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5644sqcn 24789 . . . . . . . . . 10 (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
5756a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5844subcn 24777 . . . . . . . . . 10 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5958a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
6052, 55, 57, 59cnmpt12f 23576 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
6145toponunii 22826 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
6261cnrest 23195 . . . . . . . 8 (((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6360, 47, 62syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6451, 63eqeltrrd 2832 . . . . . 6 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6564adantr 480 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6645a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
67 eqid 2731 . . . . . . . 8 (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2)))
6867rnmpt 5892 . . . . . . 7 ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))}
69 simp3 1138 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 = ((𝑅↑2) − (𝑡↑2)))
70403adant3 1132 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
7169, 70eqeltrd 2831 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 ∈ (0[,)+∞))
7271rexlimdv3a 3137 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2)) → 𝑢 ∈ (0[,)+∞)))
7372abssdv 4014 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))} ⊆ (0[,)+∞))
7468, 73eqsstrid 3968 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞))
75 rge0ssre 13351 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
7675, 46sstri 3939 . . . . . . 7 (0[,)+∞) ⊆ ℂ
7776a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0[,)+∞) ⊆ ℂ)
78 cnrest2 23196 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
7966, 74, 77, 78syl3anc 1373 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
8065, 79mpbid 232 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞))))
81 ssid 3952 . . . . . . . 8 ℂ ⊆ ℂ
82 cncfss 24814 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ))
8346, 81, 82mp2an 692 . . . . . . 7 ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ)
84 resqrtcn 26681 . . . . . . 7 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
8583, 84sselii 3926 . . . . . 6 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℂ)
86 eqid 2731 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
87 eqid 2731 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
8844, 86, 87cncfcn 24825 . . . . . . 7 (((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
8976, 81, 88mp2an 692 . . . . . 6 ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9085, 89eleqtri 2829 . . . . 5 (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9190a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9250, 80, 91cnmpt11f 23574 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
93 eqid 2731 . . . . . 6 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
9444, 93, 87cncfcn 24825 . . . . 5 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9547, 81, 94sylancl 586 . . . 4 (𝑅 ∈ ℝ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9695adantr 480 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9792, 96eleqtrrd 2834 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
9843, 97eqeltrrd 2832 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  wss 3897   class class class wbr 5086  cmpt 5167  ran crn 5612  cres 5613  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  +∞cpnf 11138  cle 11142  cmin 11339  -cneg 11340  2c2 12175  [,)cico 13242  [,]cicc 13243  cexp 13963  csqrt 15135  abscabs 15136  t crest 17319  TopOpenctopn 17320  fldccnfld 21286  TopOnctopon 22820   Cn ccn 23134   ×t ctx 23470  cnccncf 24791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-tan 15973  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-cxp 26488
This theorem is referenced by:  areacirclem3  37750  areacirclem4  37751  areacirc  37753
  Copyright terms: Public domain W3C validator