Step | Hyp | Ref
| Expression |
1 | | resqcl 13844 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) |
2 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑅↑2) ∈
ℝ) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ) |
4 | | renegcl 11284 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ) |
5 | | iccssre 13161 |
. . . . . . . . . 10
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ) |
6 | 4, 5 | mpancom 685 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ) |
7 | 6 | sselda 3921 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
8 | 7 | resqcld 13965 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ) |
9 | 8 | adantlr 712 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ) |
10 | 3, 9 | resubcld 11403 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
11 | | elicc2 13144 |
. . . . . . . . 9
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
12 | 4, 11 | mpancom 685 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
14 | 1 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
15 | | resqcl 13844 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) |
16 | 15 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
17 | 14, 16 | subge0d 11565 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
18 | | absresq 15014 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ →
((abs‘𝑡)↑2) =
(𝑡↑2)) |
19 | 18 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
20 | 19 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
21 | 17, 20 | bitr4d 281 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔
((abs‘𝑡)↑2) ≤
(𝑅↑2))) |
22 | | recn 10961 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
23 | 22 | abscld 15148 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ →
(abs‘𝑡) ∈
ℝ) |
24 | 23 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (abs‘𝑡) ∈
ℝ) |
25 | | simp1 1135 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑅 ∈ ℝ) |
26 | 22 | absge0d 15156 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℝ → 0 ≤
(abs‘𝑡)) |
27 | 26 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘𝑡)) |
28 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤ 𝑅) |
29 | 24, 25, 27, 28 | le2sqd 13974 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2))) |
30 | | simp3 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
31 | 30, 25 | absled 15142 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
32 | 21, 29, 31 | 3bitr2d 307 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
33 | 32 | biimprd 247 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
34 | 33 | 3expa 1117 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
35 | 34 | exp4b 431 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))) |
36 | 35 | 3impd 1347 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
37 | 13, 36 | sylbid 239 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
38 | 37 | imp 407 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
39 | | elrege0 13186 |
. . . . 5
⊢ (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞)
↔ (((𝑅↑2) −
(𝑡↑2)) ∈ ℝ
∧ 0 ≤ ((𝑅↑2)
− (𝑡↑2)))) |
40 | 10, 38, 39 | sylanbrc 583 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈
(0[,)+∞)) |
41 | | fvres 6793 |
. . . 4
⊢ (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞)
→ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2)))) |
42 | 40, 41 | syl 17 |
. . 3
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√ ↾
(0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2)))) |
43 | 42 | mpteq2dva 5174 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾
(0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2))))) |
44 | | eqid 2738 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
45 | 44 | cnfldtopon 23946 |
. . . . . 6
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
46 | | ax-resscn 10928 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
47 | 6, 46 | sstrdi 3933 |
. . . . . 6
⊢ (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℂ) |
48 | | resttopon 22312 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (-𝑅[,]𝑅) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅))) |
49 | 45, 47, 48 | sylancr 587 |
. . . . 5
⊢ (𝑅 ∈ ℝ →
((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅))) |
50 | 49 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) →
((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅))) |
51 | 47 | resmptd 5948 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2)))) |
52 | 45 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
53 | | recn 10961 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℂ) |
54 | 53 | sqcld 13862 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℂ) |
55 | 52, 52, 54 | cnmptc 22813 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑅↑2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
56 | 44 | sqcn 24037 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
57 | 56 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
58 | 44 | subcn 24029 |
. . . . . . . . . 10
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ → −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
60 | 52, 55, 57, 59 | cnmpt12f 22817 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
61 | 45 | toponunii 22065 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
62 | 61 | cnrest 22436 |
. . . . . . . 8
⊢ (((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn
(TopOpen‘ℂfld))) |
63 | 60, 47, 62 | syl2anc 584 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn
(TopOpen‘ℂfld))) |
64 | 51, 63 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn
(TopOpen‘ℂfld))) |
65 | 64 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn
(TopOpen‘ℂfld))) |
66 | 45 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
67 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) |
68 | 67 | rnmpt 5864 |
. . . . . . 7
⊢ ran
(𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))} |
69 | | simp3 1137 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 = ((𝑅↑2) − (𝑡↑2))) |
70 | 40 | 3adant3 1131 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → ((𝑅↑2) − (𝑡↑2)) ∈
(0[,)+∞)) |
71 | 69, 70 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 ∈ (0[,)+∞)) |
72 | 71 | rexlimdv3a 3215 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2)) → 𝑢 ∈ (0[,)+∞))) |
73 | 72 | abssdv 4002 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))} ⊆
(0[,)+∞)) |
74 | 68, 73 | eqsstrid 3969 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆
(0[,)+∞)) |
75 | | rge0ssre 13188 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
76 | 75, 46 | sstri 3930 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℂ |
77 | 76 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (0[,)+∞)
⊆ ℂ) |
78 | | cnrest2 22437 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞) ∧
(0[,)+∞) ⊆ ℂ) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld))
↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t (0[,)+∞))))) |
79 | 66, 74, 77, 78 | syl3anc 1370 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld))
↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t (0[,)+∞))))) |
80 | 65, 79 | mpbid 231 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t (0[,)+∞)))) |
81 | | ssid 3943 |
. . . . . . . 8
⊢ ℂ
⊆ ℂ |
82 | | cncfss 24062 |
. . . . . . . 8
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
((0[,)+∞)–cn→ℝ)
⊆ ((0[,)+∞)–cn→ℂ)) |
83 | 46, 81, 82 | mp2an 689 |
. . . . . . 7
⊢
((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ) |
84 | | resqrtcn 25902 |
. . . . . . 7
⊢ (√
↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ) |
85 | 83, 84 | sselii 3918 |
. . . . . 6
⊢ (√
↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℂ) |
86 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t
(0[,)+∞)) = ((TopOpen‘ℂfld) ↾t
(0[,)+∞)) |
87 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
((TopOpen‘ℂfld) ↾t
ℂ) |
88 | 44, 86, 87 | cncfcn 24073 |
. . . . . . 7
⊢
(((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) →
((0[,)+∞)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
((TopOpen‘ℂfld) ↾t
ℂ))) |
89 | 76, 81, 88 | mp2an 689 |
. . . . . 6
⊢
((0[,)+∞)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn
((TopOpen‘ℂfld) ↾t
ℂ)) |
90 | 85, 89 | eleqtri 2837 |
. . . . 5
⊢ (√
↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld)
↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld)
↾t ℂ)) |
91 | 90 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (√ ↾
(0[,)+∞)) ∈ (((TopOpen‘ℂfld)
↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
92 | 50, 80, 91 | cnmpt11f 22815 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾
(0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
93 | | eqid 2738 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld)
↾t (-𝑅[,]𝑅)) |
94 | 44, 93, 87 | cncfcn 24073 |
. . . . 5
⊢ (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
95 | 47, 81, 94 | sylancl 586 |
. . . 4
⊢ (𝑅 ∈ ℝ → ((-𝑅[,]𝑅)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
96 | 95 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((-𝑅[,]𝑅)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld)
↾t ℂ))) |
97 | 92, 96 | eleqtrrd 2842 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾
(0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
98 | 43, 97 | eqeltrrd 2840 |
1
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |