Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem2 Structured version   Visualization version   GIF version

Theorem areacirclem2 37679
Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 resqcl 14140 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑅↑2) ∈ ℝ)
32adantr 480 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
4 renegcl 11544 . . . . . . . . . 10 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5 iccssre 13444 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 5mpancom 688 . . . . . . . . 9 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
76sselda 3958 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
87resqcld 14141 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
98adantlr 715 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
103, 9resubcld 11663 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
11 elicc2 13426 . . . . . . . . 9 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
124, 11mpancom 688 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1312adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1413ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
15 resqcl 14140 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
16153ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1714, 16subge0d 11825 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
18 absresq 15319 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
19183ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
2019breq1d 5129 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2117, 20bitr4d 282 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
22 recn 11217 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322abscld 15453 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
24233ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
25 simp1 1136 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
2622absge0d 15461 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
27263ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
28 simp2 1137 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2924, 25, 27, 28le2sqd 14273 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
30 simp3 1138 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
3130, 25absled 15447 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
3221, 29, 313bitr2d 307 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
3332biimprd 248 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
34333expa 1118 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3534exp4b 430 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
36353impd 1349 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3713, 36sylbid 240 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3837imp 406 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
39 elrege0 13469 . . . . 5 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) ↔ (((𝑅↑2) − (𝑡↑2)) ∈ ℝ ∧ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
4010, 38, 39sylanbrc 583 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
41 fvres 6894 . . . 4 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4240, 41syl 17 . . 3 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4342mpteq2dva 5214 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))))
44 eqid 2735 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 24719 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
46 ax-resscn 11184 . . . . . . 7 ℝ ⊆ ℂ
476, 46sstrdi 3971 . . . . . 6 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℂ)
48 resttopon 23097 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
4945, 47, 48sylancr 587 . . . . 5 (𝑅 ∈ ℝ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5049adantr 480 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5147resmptd 6027 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))))
5245a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
53 recn 11217 . . . . . . . . . . 11 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
5453sqcld 14160 . . . . . . . . . 10 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
5552, 52, 54cnmptc 23598 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑅↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5644sqcn 24816 . . . . . . . . . 10 (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
5756a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5844subcn 24804 . . . . . . . . . 10 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5958a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
6052, 55, 57, 59cnmpt12f 23602 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
6145toponunii 22852 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
6261cnrest 23221 . . . . . . . 8 (((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6360, 47, 62syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6451, 63eqeltrrd 2835 . . . . . 6 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6564adantr 480 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6645a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
67 eqid 2735 . . . . . . . 8 (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2)))
6867rnmpt 5937 . . . . . . 7 ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))}
69 simp3 1138 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 = ((𝑅↑2) − (𝑡↑2)))
70403adant3 1132 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
7169, 70eqeltrd 2834 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 ∈ (0[,)+∞))
7271rexlimdv3a 3145 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2)) → 𝑢 ∈ (0[,)+∞)))
7372abssdv 4043 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))} ⊆ (0[,)+∞))
7468, 73eqsstrid 3997 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞))
75 rge0ssre 13471 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
7675, 46sstri 3968 . . . . . . 7 (0[,)+∞) ⊆ ℂ
7776a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0[,)+∞) ⊆ ℂ)
78 cnrest2 23222 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
7966, 74, 77, 78syl3anc 1373 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
8065, 79mpbid 232 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞))))
81 ssid 3981 . . . . . . . 8 ℂ ⊆ ℂ
82 cncfss 24841 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ))
8346, 81, 82mp2an 692 . . . . . . 7 ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ)
84 resqrtcn 26709 . . . . . . 7 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
8583, 84sselii 3955 . . . . . 6 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℂ)
86 eqid 2735 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
87 eqid 2735 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
8844, 86, 87cncfcn 24852 . . . . . . 7 (((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
8976, 81, 88mp2an 692 . . . . . 6 ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9085, 89eleqtri 2832 . . . . 5 (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9190a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9250, 80, 91cnmpt11f 23600 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
93 eqid 2735 . . . . . 6 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
9444, 93, 87cncfcn 24852 . . . . 5 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9547, 81, 94sylancl 586 . . . 4 (𝑅 ∈ ℝ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9695adantr 480 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9792, 96eleqtrrd 2837 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
9843, 97eqeltrrd 2835 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  wss 3926   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  +∞cpnf 11264  cle 11268  cmin 11464  -cneg 11465  2c2 12293  [,)cico 13362  [,]cicc 13363  cexp 14077  csqrt 15250  abscabs 15251  t crest 17432  TopOpenctopn 17433  fldccnfld 21313  TopOnctopon 22846   Cn ccn 23160   ×t ctx 23496  cnccncf 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515  df-cxp 26516
This theorem is referenced by:  areacirclem3  37680  areacirclem4  37681  areacirc  37683
  Copyright terms: Public domain W3C validator