Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem2 Structured version   Visualization version   GIF version

Theorem areacirclem2 37710
Description: Endpoint-inclusive continuity of Cartesian ordinate of circle. (Contributed by Brendan Leahy, 29-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 resqcl 14096 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑅↑2) ∈ ℝ)
32adantr 480 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
4 renegcl 11492 . . . . . . . . . 10 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5 iccssre 13397 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 5mpancom 688 . . . . . . . . 9 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
76sselda 3949 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
87resqcld 14097 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
98adantlr 715 . . . . . 6 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ)
103, 9resubcld 11613 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ)
11 elicc2 13379 . . . . . . . . 9 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
124, 11mpancom 688 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1312adantr 480 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
1413ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ)
15 resqcl 14096 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
16153ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1714, 16subge0d 11775 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2)))
18 absresq 15275 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
19183ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2))
2019breq1d 5120 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2)))
2117, 20bitr4d 282 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
22 recn 11165 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
2322abscld 15412 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
24233ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
25 simp1 1136 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
2622absge0d 15420 . . . . . . . . . . . . . 14 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
27263ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
28 simp2 1137 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 0 ≤ 𝑅)
2924, 25, 27, 28le2sqd 14229 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
30 simp3 1138 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
3130, 25absled 15406 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
3221, 29, 313bitr2d 307 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅𝑡𝑡𝑅)))
3332biimprd 248 . . . . . . . . . 10 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
34333expa 1118 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3534exp4b 430 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))))
36353impd 1349 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3713, 36sylbid 240 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))))
3837imp 406 . . . . 5 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))
39 elrege0 13422 . . . . 5 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) ↔ (((𝑅↑2) − (𝑡↑2)) ∈ ℝ ∧ 0 ≤ ((𝑅↑2) − (𝑡↑2))))
4010, 38, 39sylanbrc 583 . . . 4 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
41 fvres 6880 . . . 4 (((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4240, 41syl 17 . . 3 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2))) = (√‘((𝑅↑2) − (𝑡↑2))))
4342mpteq2dva 5203 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))))
44 eqid 2730 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 24677 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
46 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
476, 46sstrdi 3962 . . . . . 6 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℂ)
48 resttopon 23055 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
4945, 47, 48sylancr 587 . . . . 5 (𝑅 ∈ ℝ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5049adantr 480 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
5147resmptd 6014 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))))
5245a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
53 recn 11165 . . . . . . . . . . 11 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
5453sqcld 14116 . . . . . . . . . 10 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℂ)
5552, 52, 54cnmptc 23556 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑅↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5644sqcn 24774 . . . . . . . . . 10 (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
5756a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ (𝑡↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5844subcn 24762 . . . . . . . . . 10 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5958a1i 11 . . . . . . . . 9 (𝑅 ∈ ℝ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
6052, 55, 57, 59cnmpt12f 23560 . . . . . . . 8 (𝑅 ∈ ℝ → (𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
6145toponunii 22810 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
6261cnrest 23179 . . . . . . . 8 (((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6360, 47, 62syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ → ((𝑡 ∈ ℂ ↦ ((𝑅↑2) − (𝑡↑2))) ↾ (-𝑅[,]𝑅)) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6451, 63eqeltrrd 2830 . . . . . 6 (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6564adantr 480 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)))
6645a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
67 eqid 2730 . . . . . . . 8 (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2)))
6867rnmpt 5924 . . . . . . 7 ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) = {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))}
69 simp3 1138 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 = ((𝑅↑2) − (𝑡↑2)))
70403adant3 1132 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → ((𝑅↑2) − (𝑡↑2)) ∈ (0[,)+∞))
7169, 70eqeltrd 2829 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑢 = ((𝑅↑2) − (𝑡↑2))) → 𝑢 ∈ (0[,)+∞))
7271rexlimdv3a 3139 . . . . . . . 8 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2)) → 𝑢 ∈ (0[,)+∞)))
7372abssdv 4034 . . . . . . 7 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → {𝑢 ∣ ∃𝑡 ∈ (-𝑅[,]𝑅)𝑢 = ((𝑅↑2) − (𝑡↑2))} ⊆ (0[,)+∞))
7468, 73eqsstrid 3988 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞))
75 rge0ssre 13424 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
7675, 46sstri 3959 . . . . . . 7 (0[,)+∞) ⊆ ℂ
7776a1i 11 . . . . . 6 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (0[,)+∞) ⊆ ℂ)
78 cnrest2 23180 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ⊆ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
7966, 74, 77, 78syl3anc 1373 . . . . 5 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn (TopOpen‘ℂfld)) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞)))))
8065, 79mpbid 232 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) − (𝑡↑2))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (0[,)+∞))))
81 ssid 3972 . . . . . . . 8 ℂ ⊆ ℂ
82 cncfss 24799 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ))
8346, 81, 82mp2an 692 . . . . . . 7 ((0[,)+∞)–cn→ℝ) ⊆ ((0[,)+∞)–cn→ℂ)
84 resqrtcn 26666 . . . . . . 7 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
8583, 84sselii 3946 . . . . . 6 (√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℂ)
86 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
87 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
8844, 86, 87cncfcn 24810 . . . . . . 7 (((0[,)+∞) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
8976, 81, 88mp2an 692 . . . . . 6 ((0[,)+∞)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9085, 89eleqtri 2827 . . . . 5 (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ))
9190a1i 11 . . . 4 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (√ ↾ (0[,)+∞)) ∈ (((TopOpen‘ℂfld) ↾t (0[,)+∞)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9250, 80, 91cnmpt11f 23558 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
93 eqid 2730 . . . . . 6 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
9444, 93, 87cncfcn 24810 . . . . 5 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9547, 81, 94sylancl 586 . . . 4 (𝑅 ∈ ℝ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9695adantr 480 . . 3 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
9792, 96eleqtrrd 2832 . 2 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((√ ↾ (0[,)+∞))‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
9843, 97eqeltrrd 2830 1 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  wss 3917   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  +∞cpnf 11212  cle 11216  cmin 11412  -cneg 11413  2c2 12248  [,)cico 13315  [,]cicc 13316  cexp 14033  csqrt 15206  abscabs 15207  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  cnccncf 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by:  areacirclem3  37711  areacirclem4  37712  areacirc  37714
  Copyright terms: Public domain W3C validator