Step | Hyp | Ref
| Expression |
1 | | reconnlem1 23989 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴) |
2 | 1 | ralrimivva 3123 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) |
3 | 2 | ex 413 |
. 2
⊢ (𝐴 ⊆ ℝ →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) |
4 | | n0 4280 |
. . . . . . . . 9
⊢ ((𝑢 ∩ 𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴)) |
5 | | n0 4280 |
. . . . . . . . 9
⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴)) |
6 | 4, 5 | anbi12i 627 |
. . . . . . . 8
⊢ (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴))) |
7 | | exdistrv 1959 |
. . . . . . . . 9
⊢
(∃𝑏∃𝑐(𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴))) |
8 | | simplll 772 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ) |
9 | | simprll 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢 ∩ 𝐴)) |
10 | 9 | elin2d 4133 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ 𝐴) |
11 | 8, 10 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ) |
12 | | simprlr 777 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣 ∩ 𝐴)) |
13 | 12 | elin2d 4133 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ 𝐴) |
14 | 8, 13 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ) |
15 | 8 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝐴 ⊆ ℝ) |
16 | | simplrl 774 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran
(,))) |
17 | 16 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑢 ∈ (topGen‘ran
(,))) |
18 | | simplrr 775 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran
(,))) |
19 | 18 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑣 ∈ (topGen‘ran
(,))) |
20 | | simpllr 773 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) |
21 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑏 ∈ (𝑢 ∩ 𝐴)) |
22 | 12 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑐 ∈ (𝑣 ∩ 𝐴)) |
23 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) |
24 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑏 ≤ 𝑐) |
25 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) |
26 | 15, 17, 19, 20, 21, 22, 23, 24, 25 | reconnlem2 23990 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
27 | 8 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝐴 ⊆ ℝ) |
28 | 18 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑣 ∈ (topGen‘ran
(,))) |
29 | 16 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑢 ∈ (topGen‘ran
(,))) |
30 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) |
31 | 12 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑐 ∈ (𝑣 ∩ 𝐴)) |
32 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑏 ∈ (𝑢 ∩ 𝐴)) |
33 | | incom 4135 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∩ 𝑢) = (𝑢 ∩ 𝑣) |
34 | | simplrr 775 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) |
35 | 33, 34 | eqsstrid 3969 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → (𝑣 ∩ 𝑢) ⊆ (ℝ ∖ 𝐴)) |
36 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑐 ≤ 𝑏) |
37 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) |
38 | 27, 28, 29, 30, 31, 32, 35, 36, 37 | reconnlem2 23990 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → ¬ 𝐴 ⊆ (𝑣 ∪ 𝑢)) |
39 | | uncom 4087 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∪ 𝑢) = (𝑢 ∪ 𝑣) |
40 | 39 | sseq2i 3950 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ (𝑣 ∪ 𝑢) ↔ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
41 | 38, 40 | sylnib 328 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
42 | 11, 14, 26, 41 | lecasei 11081 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
43 | 42 | exp32 421 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
44 | 43 | exlimdvv 1937 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏∃𝑐(𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
45 | 7, 44 | syl5bir 242 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
46 | 6, 45 | syl5bi 241 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
47 | 46 | expd 416 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢 ∩ 𝐴) ≠ ∅ → ((𝑣 ∩ 𝐴) ≠ ∅ → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣))))) |
48 | 47 | 3impd 1347 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣))) |
49 | 48 | ex 413 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
50 | 49 | ralrimdvva 3125 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran
(,))(((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
51 | | retopon 23927 |
. . . 4
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
52 | | connsub 22572 |
. . . 4
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran
(,))∀𝑣 ∈
(topGen‘ran (,))(((𝑢
∩ 𝐴) ≠ ∅ ∧
(𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
53 | 51, 52 | mpan 687 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran
(,))∀𝑣 ∈
(topGen‘ran (,))(((𝑢
∩ 𝐴) ≠ ∅ ∧
(𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
54 | 50, 53 | sylibrd 258 |
. 2
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,))
↾t 𝐴)
∈ Conn)) |
55 | 3, 54 | impbid 211 |
1
⊢ (𝐴 ⊆ ℝ →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) |