MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconn Structured version   Visualization version   GIF version

Theorem reconn 24724
Description: A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconn (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem reconn
Dummy variables 𝑏 𝑐 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem1 24722 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
21ralrimivva 3181 . . 3 ((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
32ex 412 . 2 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
4 n0 4319 . . . . . . . . 9 ((𝑢𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢𝐴))
5 n0 4319 . . . . . . . . 9 ((𝑣𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣𝐴))
64, 5anbi12i 628 . . . . . . . 8 (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
7 exdistrv 1955 . . . . . . . . 9 (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
8 simplll 774 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ)
9 simprll 778 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢𝐴))
109elin2d 4171 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏𝐴)
118, 10sseldd 3950 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ)
12 simprlr 779 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣𝐴))
1312elin2d 4171 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐𝐴)
148, 13sseldd 3950 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ)
158adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝐴 ⊆ ℝ)
16 simplrl 776 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran (,)))
1716ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑢 ∈ (topGen‘ran (,)))
18 simplrr 777 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran (,)))
1918ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑣 ∈ (topGen‘ran (,)))
20 simpllr 775 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
219adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏 ∈ (𝑢𝐴))
2212adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑐 ∈ (𝑣𝐴))
23 simplrr 777 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
24 simpr 484 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏𝑐)
25 eqid 2730 . . . . . . . . . . . . 13 sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < )
2615, 17, 19, 20, 21, 22, 23, 24, 25reconnlem2 24723 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ¬ 𝐴 ⊆ (𝑢𝑣))
278adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝐴 ⊆ ℝ)
2818ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑣 ∈ (topGen‘ran (,)))
2916ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑢 ∈ (topGen‘ran (,)))
30 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
3112adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐 ∈ (𝑣𝐴))
329adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑏 ∈ (𝑢𝐴))
33 incom 4175 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
34 simplrr 777 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
3533, 34eqsstrid 3988 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑣𝑢) ⊆ (ℝ ∖ 𝐴))
36 simpr 484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐𝑏)
37 eqid 2730 . . . . . . . . . . . . . 14 sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < )
3827, 28, 29, 30, 31, 32, 35, 36, 37reconnlem2 24723 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑣𝑢))
39 uncom 4124 . . . . . . . . . . . . . 14 (𝑣𝑢) = (𝑢𝑣)
4039sseq2i 3979 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝑣𝑢) ↔ 𝐴 ⊆ (𝑢𝑣))
4138, 40sylnib 328 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑢𝑣))
4211, 14, 26, 41lecasei 11287 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢𝑣))
4342exp32 420 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4443exlimdvv 1934 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
457, 44biimtrrid 243 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
466, 45biimtrid 242 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4746expd 415 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢𝐴) ≠ ∅ → ((𝑣𝐴) ≠ ∅ → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣)))))
48473impd 1349 . . . . 5 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣)))
4948ex 412 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5049ralrimdvva 3193 . . 3 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
51 retopon 24658 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
52 connsub 23315 . . . 4 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5351, 52mpan 690 . . 3 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5450, 53sylibrd 259 . 2 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
553, 54impbid 212 1 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2926  wral 3045  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  supcsup 9398  cr 11074   < clt 11215  cle 11216  (,)cioo 13313  [,]cicc 13316  t crest 17390  topGenctg 17407  TopOnctopon 22804  Conncconn 23305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-conn 23306
This theorem is referenced by:  retopconn  24725  iccconn  24726  resconn  35240  ioosconn  35241  iccllysconn  35244  ivthALT  36330
  Copyright terms: Public domain W3C validator