MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconn Structured version   Visualization version   GIF version

Theorem reconn 24733
Description: A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconn (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem reconn
Dummy variables 𝑏 𝑐 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem1 24731 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
21ralrimivva 3172 . . 3 ((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
32ex 412 . 2 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
4 n0 4306 . . . . . . . . 9 ((𝑢𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢𝐴))
5 n0 4306 . . . . . . . . 9 ((𝑣𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣𝐴))
64, 5anbi12i 628 . . . . . . . 8 (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
7 exdistrv 1955 . . . . . . . . 9 (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
8 simplll 774 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ)
9 simprll 778 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢𝐴))
109elin2d 4158 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏𝐴)
118, 10sseldd 3938 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ)
12 simprlr 779 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣𝐴))
1312elin2d 4158 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐𝐴)
148, 13sseldd 3938 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ)
158adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝐴 ⊆ ℝ)
16 simplrl 776 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran (,)))
1716ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑢 ∈ (topGen‘ran (,)))
18 simplrr 777 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran (,)))
1918ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑣 ∈ (topGen‘ran (,)))
20 simpllr 775 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
219adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏 ∈ (𝑢𝐴))
2212adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑐 ∈ (𝑣𝐴))
23 simplrr 777 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
24 simpr 484 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏𝑐)
25 eqid 2729 . . . . . . . . . . . . 13 sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < )
2615, 17, 19, 20, 21, 22, 23, 24, 25reconnlem2 24732 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ¬ 𝐴 ⊆ (𝑢𝑣))
278adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝐴 ⊆ ℝ)
2818ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑣 ∈ (topGen‘ran (,)))
2916ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑢 ∈ (topGen‘ran (,)))
30 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
3112adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐 ∈ (𝑣𝐴))
329adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑏 ∈ (𝑢𝐴))
33 incom 4162 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
34 simplrr 777 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
3533, 34eqsstrid 3976 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑣𝑢) ⊆ (ℝ ∖ 𝐴))
36 simpr 484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐𝑏)
37 eqid 2729 . . . . . . . . . . . . . 14 sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < )
3827, 28, 29, 30, 31, 32, 35, 36, 37reconnlem2 24732 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑣𝑢))
39 uncom 4111 . . . . . . . . . . . . . 14 (𝑣𝑢) = (𝑢𝑣)
4039sseq2i 3967 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝑣𝑢) ↔ 𝐴 ⊆ (𝑢𝑣))
4138, 40sylnib 328 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑢𝑣))
4211, 14, 26, 41lecasei 11240 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢𝑣))
4342exp32 420 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4443exlimdvv 1934 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
457, 44biimtrrid 243 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
466, 45biimtrid 242 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4746expd 415 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢𝐴) ≠ ∅ → ((𝑣𝐴) ≠ ∅ → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣)))))
48473impd 1349 . . . . 5 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣)))
4948ex 412 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5049ralrimdvva 3184 . . 3 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
51 retopon 24667 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
52 connsub 23324 . . . 4 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5351, 52mpan 690 . . 3 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5450, 53sylibrd 259 . 2 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
553, 54impbid 212 1 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  wne 2925  wral 3044  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286   class class class wbr 5095  ran crn 5624  cfv 6486  (class class class)co 7353  supcsup 9349  cr 11027   < clt 11168  cle 11169  (,)cioo 13266  [,]cicc 13269  t crest 17342  topGenctg 17359  TopOnctopon 22813  Conncconn 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-conn 23315
This theorem is referenced by:  retopconn  24734  iccconn  24735  resconn  35221  ioosconn  35222  iccllysconn  35225  ivthALT  36311
  Copyright terms: Public domain W3C validator