| Step | Hyp | Ref
| Expression |
| 1 | | reconnlem1 24848 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴) |
| 2 | 1 | ralrimivva 3202 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧
((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) |
| 3 | 2 | ex 412 |
. 2
⊢ (𝐴 ⊆ ℝ →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) |
| 4 | | n0 4353 |
. . . . . . . . 9
⊢ ((𝑢 ∩ 𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴)) |
| 5 | | n0 4353 |
. . . . . . . . 9
⊢ ((𝑣 ∩ 𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴)) |
| 6 | 4, 5 | anbi12i 628 |
. . . . . . . 8
⊢ (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴))) |
| 7 | | exdistrv 1955 |
. . . . . . . . 9
⊢
(∃𝑏∃𝑐(𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴))) |
| 8 | | simplll 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ) |
| 9 | | simprll 779 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢 ∩ 𝐴)) |
| 10 | 9 | elin2d 4205 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ 𝐴) |
| 11 | 8, 10 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ) |
| 12 | | simprlr 780 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣 ∩ 𝐴)) |
| 13 | 12 | elin2d 4205 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ 𝐴) |
| 14 | 8, 13 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ) |
| 15 | 8 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝐴 ⊆ ℝ) |
| 16 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran
(,))) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑢 ∈ (topGen‘ran
(,))) |
| 18 | | simplrr 778 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran
(,))) |
| 19 | 18 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑣 ∈ (topGen‘ran
(,))) |
| 20 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) |
| 21 | 9 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑏 ∈ (𝑢 ∩ 𝐴)) |
| 22 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑐 ∈ (𝑣 ∩ 𝐴)) |
| 23 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) |
| 24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → 𝑏 ≤ 𝑐) |
| 25 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) |
| 26 | 15, 17, 19, 20, 21, 22, 23, 24, 25 | reconnlem2 24849 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏 ≤ 𝑐) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
| 27 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝐴 ⊆ ℝ) |
| 28 | 18 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑣 ∈ (topGen‘ran
(,))) |
| 29 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑢 ∈ (topGen‘ran
(,))) |
| 30 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) |
| 31 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑐 ∈ (𝑣 ∩ 𝐴)) |
| 32 | 9 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑏 ∈ (𝑢 ∩ 𝐴)) |
| 33 | | incom 4209 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∩ 𝑢) = (𝑢 ∩ 𝑣) |
| 34 | | simplrr 778 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) |
| 35 | 33, 34 | eqsstrid 4022 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → (𝑣 ∩ 𝑢) ⊆ (ℝ ∖ 𝐴)) |
| 36 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → 𝑐 ≤ 𝑏) |
| 37 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) |
| 38 | 27, 28, 29, 30, 31, 32, 35, 36, 37 | reconnlem2 24849 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → ¬ 𝐴 ⊆ (𝑣 ∪ 𝑢)) |
| 39 | | uncom 4158 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∪ 𝑢) = (𝑢 ∪ 𝑣) |
| 40 | 39 | sseq2i 4013 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ (𝑣 ∪ 𝑢) ↔ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
| 41 | 38, 40 | sylnib 328 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (𝑢 ∈
(topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐 ≤ 𝑏) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
| 42 | 11, 14, 26, 41 | lecasei 11367 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)) |
| 43 | 42 | exp32 420 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 44 | 43 | exlimdvv 1934 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏∃𝑐(𝑏 ∈ (𝑢 ∩ 𝐴) ∧ 𝑐 ∈ (𝑣 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 45 | 7, 44 | biimtrrid 243 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢 ∩ 𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣 ∩ 𝐴)) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 46 | 6, 45 | biimtrid 242 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅) → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 47 | 46 | expd 415 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢 ∩ 𝐴) ≠ ∅ → ((𝑣 ∩ 𝐴) ≠ ∅ → ((𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣))))) |
| 48 | 47 | 3impd 1349 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣))) |
| 49 | 48 | ex 412 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,))
∧ 𝑣 ∈
(topGen‘ran (,)))) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 50 | 49 | ralrimdvva 3211 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran
(,))(((𝑢 ∩ 𝐴) ≠ ∅ ∧ (𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 51 | | retopon 24784 |
. . . 4
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 52 | | connsub 23429 |
. . . 4
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran
(,))∀𝑣 ∈
(topGen‘ran (,))(((𝑢
∩ 𝐴) ≠ ∅ ∧
(𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 53 | 51, 52 | mpan 690 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran
(,))∀𝑣 ∈
(topGen‘ran (,))(((𝑢
∩ 𝐴) ≠ ∅ ∧
(𝑣 ∩ 𝐴) ≠ ∅ ∧ (𝑢 ∩ 𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢 ∪ 𝑣)))) |
| 54 | 50, 53 | sylibrd 259 |
. 2
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,))
↾t 𝐴)
∈ Conn)) |
| 55 | 3, 54 | impbid 212 |
1
⊢ (𝐴 ⊆ ℝ →
(((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) |