MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconn Structured version   Visualization version   GIF version

Theorem reconn 24137
Description: A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconn (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem reconn
Dummy variables 𝑏 𝑐 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem1 24135 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
21ralrimivva 3195 . . 3 ((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
32ex 413 . 2 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
4 n0 4304 . . . . . . . . 9 ((𝑢𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢𝐴))
5 n0 4304 . . . . . . . . 9 ((𝑣𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣𝐴))
64, 5anbi12i 627 . . . . . . . 8 (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
7 exdistrv 1959 . . . . . . . . 9 (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
8 simplll 773 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ)
9 simprll 777 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢𝐴))
109elin2d 4157 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏𝐴)
118, 10sseldd 3943 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ)
12 simprlr 778 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣𝐴))
1312elin2d 4157 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐𝐴)
148, 13sseldd 3943 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ)
158adantr 481 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝐴 ⊆ ℝ)
16 simplrl 775 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran (,)))
1716ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑢 ∈ (topGen‘ran (,)))
18 simplrr 776 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran (,)))
1918ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑣 ∈ (topGen‘ran (,)))
20 simpllr 774 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
219adantr 481 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏 ∈ (𝑢𝐴))
2212adantr 481 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑐 ∈ (𝑣𝐴))
23 simplrr 776 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
24 simpr 485 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏𝑐)
25 eqid 2736 . . . . . . . . . . . . 13 sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < )
2615, 17, 19, 20, 21, 22, 23, 24, 25reconnlem2 24136 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ¬ 𝐴 ⊆ (𝑢𝑣))
278adantr 481 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝐴 ⊆ ℝ)
2818ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑣 ∈ (topGen‘ran (,)))
2916ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑢 ∈ (topGen‘ran (,)))
30 simpllr 774 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
3112adantr 481 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐 ∈ (𝑣𝐴))
329adantr 481 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑏 ∈ (𝑢𝐴))
33 incom 4159 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
34 simplrr 776 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
3533, 34eqsstrid 3990 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑣𝑢) ⊆ (ℝ ∖ 𝐴))
36 simpr 485 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐𝑏)
37 eqid 2736 . . . . . . . . . . . . . 14 sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < )
3827, 28, 29, 30, 31, 32, 35, 36, 37reconnlem2 24136 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑣𝑢))
39 uncom 4111 . . . . . . . . . . . . . 14 (𝑣𝑢) = (𝑢𝑣)
4039sseq2i 3971 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝑣𝑢) ↔ 𝐴 ⊆ (𝑢𝑣))
4138, 40sylnib 327 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑢𝑣))
4211, 14, 26, 41lecasei 11219 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢𝑣))
4342exp32 421 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4443exlimdvv 1937 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
457, 44biimtrrid 242 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
466, 45biimtrid 241 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4746expd 416 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢𝐴) ≠ ∅ → ((𝑣𝐴) ≠ ∅ → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣)))))
48473impd 1348 . . . . 5 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣)))
4948ex 413 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5049ralrimdvva 3201 . . 3 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
51 retopon 24073 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
52 connsub 22718 . . . 4 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5351, 52mpan 688 . . 3 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5450, 53sylibrd 258 . 2 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
553, 54impbid 211 1 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wex 1781  wcel 2106  wne 2941  wral 3062  cdif 3905  cun 3906  cin 3907  wss 3908  c0 4280   class class class wbr 5103  ran crn 5632  cfv 6493  (class class class)co 7351  supcsup 9334  cr 11008   < clt 11147  cle 11148  (,)cioo 13218  [,]cicc 13221  t crest 17256  topGenctg 17273  TopOnctopon 22205  Conncconn 22708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-map 8725  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fi 9305  df-sup 9336  df-inf 9337  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-q 12828  df-rp 12870  df-xneg 12987  df-xadd 12988  df-xmul 12989  df-ioo 13222  df-ico 13224  df-icc 13225  df-seq 13861  df-exp 13922  df-cj 14938  df-re 14939  df-im 14940  df-sqrt 15074  df-abs 15075  df-rest 17258  df-topgen 17279  df-psmet 20735  df-xmet 20736  df-met 20737  df-bl 20738  df-mopn 20739  df-top 22189  df-topon 22206  df-bases 22242  df-cld 22316  df-conn 22709
This theorem is referenced by:  retopconn  24138  iccconn  24139  resconn  33668  ioosconn  33669  iccllysconn  33672  ivthALT  34739
  Copyright terms: Public domain W3C validator