MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconn Structured version   Visualization version   GIF version

Theorem reconn 24739
Description: A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconn (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem reconn
Dummy variables 𝑏 𝑐 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem1 24737 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
21ralrimivva 3175 . . 3 ((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
32ex 412 . 2 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
4 n0 4298 . . . . . . . . 9 ((𝑢𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢𝐴))
5 n0 4298 . . . . . . . . 9 ((𝑣𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣𝐴))
64, 5anbi12i 628 . . . . . . . 8 (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
7 exdistrv 1956 . . . . . . . . 9 (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
8 simplll 774 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ)
9 simprll 778 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢𝐴))
109elin2d 4150 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏𝐴)
118, 10sseldd 3930 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ)
12 simprlr 779 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣𝐴))
1312elin2d 4150 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐𝐴)
148, 13sseldd 3930 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ)
158adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝐴 ⊆ ℝ)
16 simplrl 776 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran (,)))
1716ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑢 ∈ (topGen‘ran (,)))
18 simplrr 777 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran (,)))
1918ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑣 ∈ (topGen‘ran (,)))
20 simpllr 775 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
219adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏 ∈ (𝑢𝐴))
2212adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑐 ∈ (𝑣𝐴))
23 simplrr 777 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
24 simpr 484 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏𝑐)
25 eqid 2731 . . . . . . . . . . . . 13 sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < )
2615, 17, 19, 20, 21, 22, 23, 24, 25reconnlem2 24738 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ¬ 𝐴 ⊆ (𝑢𝑣))
278adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝐴 ⊆ ℝ)
2818ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑣 ∈ (topGen‘ran (,)))
2916ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑢 ∈ (topGen‘ran (,)))
30 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
3112adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐 ∈ (𝑣𝐴))
329adantr 480 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑏 ∈ (𝑢𝐴))
33 incom 4154 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
34 simplrr 777 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
3533, 34eqsstrid 3968 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑣𝑢) ⊆ (ℝ ∖ 𝐴))
36 simpr 484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐𝑏)
37 eqid 2731 . . . . . . . . . . . . . 14 sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < )
3827, 28, 29, 30, 31, 32, 35, 36, 37reconnlem2 24738 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑣𝑢))
39 uncom 4103 . . . . . . . . . . . . . 14 (𝑣𝑢) = (𝑢𝑣)
4039sseq2i 3959 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝑣𝑢) ↔ 𝐴 ⊆ (𝑢𝑣))
4138, 40sylnib 328 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑢𝑣))
4211, 14, 26, 41lecasei 11214 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢𝑣))
4342exp32 420 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4443exlimdvv 1935 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
457, 44biimtrrid 243 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
466, 45biimtrid 242 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4746expd 415 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢𝐴) ≠ ∅ → ((𝑣𝐴) ≠ ∅ → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣)))))
48473impd 1349 . . . . 5 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣)))
4948ex 412 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5049ralrimdvva 3187 . . 3 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
51 retopon 24673 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
52 connsub 23331 . . . 4 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5351, 52mpan 690 . . 3 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5450, 53sylibrd 259 . 2 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
553, 54impbid 212 1 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wex 1780  wcel 2111  wne 2928  wral 3047  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4278   class class class wbr 5086  ran crn 5612  cfv 6476  (class class class)co 7341  supcsup 9319  cr 11000   < clt 11141  cle 11142  (,)cioo 13240  [,]cicc 13243  t crest 17319  topGenctg 17336  TopOnctopon 22820  Conncconn 23321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-rest 17321  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856  df-cld 22929  df-conn 23322
This theorem is referenced by:  retopconn  24740  iccconn  24741  resconn  35282  ioosconn  35283  iccllysconn  35286  ivthALT  36369
  Copyright terms: Public domain W3C validator