Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reconn Structured version   Visualization version   GIF version

Theorem reconn 23437
 Description: A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
reconn (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem reconn
Dummy variables 𝑏 𝑐 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reconnlem1 23435 . . . 4 (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥[,]𝑦) ⊆ 𝐴)
21ralrimivva 3159 . . 3 ((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
32ex 416 . 2 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
4 n0 4263 . . . . . . . . 9 ((𝑢𝐴) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝑢𝐴))
5 n0 4263 . . . . . . . . 9 ((𝑣𝐴) ≠ ∅ ↔ ∃𝑐 𝑐 ∈ (𝑣𝐴))
64, 5anbi12i 629 . . . . . . . 8 (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
7 exdistrv 1956 . . . . . . . . 9 (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ↔ (∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)))
8 simplll 774 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝐴 ⊆ ℝ)
9 simprll 778 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ (𝑢𝐴))
109elin2d 4129 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏𝐴)
118, 10sseldd 3919 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑏 ∈ ℝ)
12 simprlr 779 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ (𝑣𝐴))
1312elin2d 4129 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐𝐴)
148, 13sseldd 3919 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → 𝑐 ∈ ℝ)
158adantr 484 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝐴 ⊆ ℝ)
16 simplrl 776 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑢 ∈ (topGen‘ran (,)))
1716ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑢 ∈ (topGen‘ran (,)))
18 simplrr 777 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → 𝑣 ∈ (topGen‘ran (,)))
1918ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑣 ∈ (topGen‘ran (,)))
20 simpllr 775 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
219adantr 484 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏 ∈ (𝑢𝐴))
2212adantr 484 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑐 ∈ (𝑣𝐴))
23 simplrr 777 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
24 simpr 488 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → 𝑏𝑐)
25 eqid 2801 . . . . . . . . . . . . 13 sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < ) = sup((𝑢 ∩ (𝑏[,]𝑐)), ℝ, < )
2615, 17, 19, 20, 21, 22, 23, 24, 25reconnlem2 23436 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑏𝑐) → ¬ 𝐴 ⊆ (𝑢𝑣))
278adantr 484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝐴 ⊆ ℝ)
2818ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑣 ∈ (topGen‘ran (,)))
2916ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑢 ∈ (topGen‘ran (,)))
30 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴)
3112adantr 484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐 ∈ (𝑣𝐴))
329adantr 484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑏 ∈ (𝑢𝐴))
33 incom 4131 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
34 simplrr 777 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))
3533, 34eqsstrid 3966 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → (𝑣𝑢) ⊆ (ℝ ∖ 𝐴))
36 simpr 488 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → 𝑐𝑏)
37 eqid 2801 . . . . . . . . . . . . . 14 sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < ) = sup((𝑣 ∩ (𝑐[,]𝑏)), ℝ, < )
3827, 28, 29, 30, 31, 32, 35, 36, 37reconnlem2 23436 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑣𝑢))
39 uncom 4083 . . . . . . . . . . . . . 14 (𝑣𝑢) = (𝑢𝑣)
4039sseq2i 3947 . . . . . . . . . . . . 13 (𝐴 ⊆ (𝑣𝑢) ↔ 𝐴 ⊆ (𝑢𝑣))
4138, 40sylnib 331 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) ∧ 𝑐𝑏) → ¬ 𝐴 ⊆ (𝑢𝑣))
4211, 14, 26, 41lecasei 10739 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) ∧ ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴))) → ¬ 𝐴 ⊆ (𝑢𝑣))
4342exp32 424 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4443exlimdvv 1935 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (∃𝑏𝑐(𝑏 ∈ (𝑢𝐴) ∧ 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
457, 44syl5bir 246 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((∃𝑏 𝑏 ∈ (𝑢𝐴) ∧ ∃𝑐 𝑐 ∈ (𝑣𝐴)) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
466, 45syl5bi 245 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅) → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣))))
4746expd 419 . . . . . 6 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → ((𝑢𝐴) ≠ ∅ → ((𝑣𝐴) ≠ ∅ → ((𝑢𝑣) ⊆ (ℝ ∖ 𝐴) → ¬ 𝐴 ⊆ (𝑢𝑣)))))
48473impd 1345 . . . . 5 (((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴) → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣)))
4948ex 416 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑢 ∈ (topGen‘ran (,)) ∧ 𝑣 ∈ (topGen‘ran (,)))) → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → (((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5049ralrimdvva 3162 . . 3 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
51 retopon 23373 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
52 connsub 22030 . . . 4 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐴 ⊆ ℝ) → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5351, 52mpan 689 . . 3 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑢 ∈ (topGen‘ran (,))∀𝑣 ∈ (topGen‘ran (,))(((𝑢𝐴) ≠ ∅ ∧ (𝑣𝐴) ≠ ∅ ∧ (𝑢𝑣) ⊆ (ℝ ∖ 𝐴)) → ¬ 𝐴 ⊆ (𝑢𝑣))))
5450, 53sylibrd 262 . 2 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴 → ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn))
553, 54impbid 215 1 (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥𝐴𝑦𝐴 (𝑥[,]𝑦) ⊆ 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109   ∖ cdif 3881   ∪ cun 3882   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033  ran crn 5524  ‘cfv 6328  (class class class)co 7139  supcsup 8892  ℝcr 10529   < clt 10668   ≤ cle 10669  (,)cioo 12730  [,]cicc 12733   ↾t crest 16690  topGenctg 16707  TopOnctopon 21519  Conncconn 22020 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-rest 16692  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-top 21503  df-topon 21520  df-bases 21555  df-cld 21628  df-conn 22021 This theorem is referenced by:  retopconn  23438  iccconn  23439  resconn  32607  ioosconn  32608  iccllysconn  32611  ivthALT  33797
 Copyright terms: Public domain W3C validator