Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem4 Structured version   Visualization version   GIF version

Theorem cvmlift3lem4 35387
Description: Lemma for cvmlift2 35381. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem4 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
Distinct variable groups:   𝑧,𝑓,𝐴   𝑓,𝑔,𝑧,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝑋,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem4
StepHypRef Expression
1 cvmlift3.b . . . . 5 𝐵 = 𝐶
2 cvmlift3.y . . . . 5 𝑌 = 𝐾
3 cvmlift3.f . . . . 5 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . . . 5 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . . . 5 (𝜑𝑂𝑌)
7 cvmlift3.g . . . . 5 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . . . 5 (𝜑𝑃𝐵)
9 cvmlift3.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . . . 5 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 35386 . . . 4 (𝜑𝐻:𝑌𝐵)
1211ffvelcdmda 7023 . . 3 ((𝜑𝑋𝑌) → (𝐻𝑋) ∈ 𝐵)
13 eleq1 2821 . . 3 ((𝐻𝑋) = 𝐴 → ((𝐻𝑋) ∈ 𝐵𝐴𝐵))
1412, 13syl5ibcom 245 . 2 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴𝐴𝐵))
15 eqid 2733 . . . . . . . . . . 11 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
163ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓 ∈ (II Cn 𝐾))
187ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 23182 . . . . . . . . . . . 12 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺𝑓) ∈ (II Cn 𝐽))
218ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑃𝐵)
22 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑓‘0) = 𝑂)
2322fveq2d 6832 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 24802 . . . . . . . . . . . . . . 15 (0[,]1) = II
2524, 2cnf 23162 . . . . . . . . . . . . . 14 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . 13 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 13371 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
28 fvco3 6927 . . . . . . . . . . . . 13 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
309ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2779 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
321, 15, 16, 20, 21, 31cvmliftiota 35366 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp1d 1142 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3424, 1cnf 23162 . . . . . . . . 9 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3533, 34syl 17 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
36 1elunit 13372 . . . . . . . 8 1 ∈ (0[,]1)
37 ffvelcdm 7020 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3835, 36, 37sylancl 586 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
39 eleq1 2821 . . . . . . 7 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵𝐴𝐵))
4038, 39syl5ibcom 245 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵))
4140expr 456 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵)))
4241a1dd 50 . . . 4 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → ((𝑓‘1) = 𝑋 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵))))
43423impd 1349 . . 3 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴𝐵))
4443rexlimdva 3134 . 2 ((𝜑𝑋𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴𝐵))
45 eqeq2 2745 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑓‘1) = 𝑥 ↔ (𝑓‘1) = 𝑋))
46453anbi2d 1443 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4746rexbidv 3157 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4847riotabidv 7311 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
49 riotaex 7313 . . . . . . . 8 (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) ∈ V
5048, 10, 49fvmpt 6935 . . . . . . 7 (𝑋𝑌 → (𝐻𝑋) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
5150adantl 481 . . . . . 6 ((𝜑𝑋𝑌) → (𝐻𝑋) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
5251eqeq1d 2735 . . . . 5 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
5352adantl 481 . . . 4 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → ((𝐻𝑋) = 𝐴 ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
541, 2, 3, 4, 5, 6, 7, 8, 9cvmlift3lem2 35385 . . . . 5 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
55 eqeq2 2745 . . . . . . . 8 (𝑧 = 𝐴 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))
56553anbi3d 1444 . . . . . . 7 (𝑧 = 𝐴 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
5756rexbidv 3157 . . . . . 6 (𝑧 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
5857riota2 7334 . . . . 5 ((𝐴𝐵 ∧ ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
5954, 58sylan2 593 . . . 4 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
6053, 59bitr4d 282 . . 3 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
6160expcom 413 . 2 ((𝜑𝑋𝑌) → (𝐴𝐵 → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))))
6214, 44, 61pm5.21ndd 379 1 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  ∃!wreu 3345   cuni 4858  cmpt 5174  ccom 5623  wf 6482  cfv 6486  crio 7308  (class class class)co 7352  0cc0 11013  1c1 11014  [,]cicc 13250   Cn ccn 23140  𝑛-Locally cnlly 23381  IIcii 24796  PConncpconn 35284  SConncsconn 35285   CovMap ccvm 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-ec 8630  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-cmp 23303  df-conn 23328  df-lly 23382  df-nlly 23383  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-ii 24798  df-cncf 24799  df-htpy 24897  df-phtpy 24898  df-phtpc 24919  df-pco 24933  df-pconn 35286  df-sconn 35287  df-cvm 35321
This theorem is referenced by:  cvmlift3lem5  35388  cvmlift3lem6  35389  cvmlift3lem7  35390  cvmlift3lem9  35392
  Copyright terms: Public domain W3C validator