Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem4 Structured version   Visualization version   GIF version

Theorem cvmlift3lem4 31850
Description: Lemma for cvmlift2 31844. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem4 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
Distinct variable groups:   𝑧,𝑓,𝐴   𝑓,𝑔,𝑧,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝑋,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem4
StepHypRef Expression
1 cvmlift3.b . . . . 5 𝐵 = 𝐶
2 cvmlift3.y . . . . 5 𝑌 = 𝐾
3 cvmlift3.f . . . . 5 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . . . 5 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . . . 5 (𝜑𝑂𝑌)
7 cvmlift3.g . . . . 5 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . . . 5 (𝜑𝑃𝐵)
9 cvmlift3.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . . . 5 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 31849 . . . 4 (𝜑𝐻:𝑌𝐵)
1211ffvelrnda 6608 . . 3 ((𝜑𝑋𝑌) → (𝐻𝑋) ∈ 𝐵)
13 eleq1 2894 . . 3 ((𝐻𝑋) = 𝐴 → ((𝐻𝑋) ∈ 𝐵𝐴𝐵))
1412, 13syl5ibcom 237 . 2 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴𝐴𝐵))
15 eqid 2825 . . . . . . . . . . 11 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
163ad2antrr 719 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simprl 789 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓 ∈ (II Cn 𝐾))
187ad2antrr 719 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 21441 . . . . . . . . . . . 12 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 581 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺𝑓) ∈ (II Cn 𝐽))
218ad2antrr 719 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑃𝐵)
22 simprr 791 . . . . . . . . . . . . 13 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑓‘0) = 𝑂)
2322fveq2d 6437 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 23054 . . . . . . . . . . . . . . 15 (0[,]1) = II
2524, 2cnf 21421 . . . . . . . . . . . . . 14 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . 13 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 12581 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
28 fvco3 6522 . . . . . . . . . . . . 13 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 582 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
309ad2antrr 719 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2872 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
321, 15, 16, 20, 21, 31cvmliftiota 31829 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp1d 1178 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3424, 1cnf 21421 . . . . . . . . 9 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3533, 34syl 17 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
36 1elunit 12582 . . . . . . . 8 1 ∈ (0[,]1)
37 ffvelrn 6606 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3835, 36, 37sylancl 582 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
39 eleq1 2894 . . . . . . 7 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵𝐴𝐵))
4038, 39syl5ibcom 237 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵))
4140expr 450 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵)))
4241a1dd 50 . . . 4 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → ((𝑓‘1) = 𝑋 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵))))
43423impd 1463 . . 3 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴𝐵))
4443rexlimdva 3240 . 2 ((𝜑𝑋𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴𝐵))
45 eqeq2 2836 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑓‘1) = 𝑥 ↔ (𝑓‘1) = 𝑋))
46453anbi2d 1571 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4746rexbidv 3262 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4847riotabidv 6868 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
49 riotaex 6870 . . . . . . . 8 (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) ∈ V
5048, 10, 49fvmpt 6529 . . . . . . 7 (𝑋𝑌 → (𝐻𝑋) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
5150adantl 475 . . . . . 6 ((𝜑𝑋𝑌) → (𝐻𝑋) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
5251eqeq1d 2827 . . . . 5 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
5352adantl 475 . . . 4 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → ((𝐻𝑋) = 𝐴 ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
541, 2, 3, 4, 5, 6, 7, 8, 9cvmlift3lem2 31848 . . . . 5 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
55 eqeq2 2836 . . . . . . . 8 (𝑧 = 𝐴 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))
56553anbi3d 1572 . . . . . . 7 (𝑧 = 𝐴 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
5756rexbidv 3262 . . . . . 6 (𝑧 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
5857riota2 6888 . . . . 5 ((𝐴𝐵 ∧ ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
5954, 58sylan2 588 . . . 4 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
6053, 59bitr4d 274 . . 3 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
6160expcom 404 . 2 ((𝜑𝑋𝑌) → (𝐴𝐵 → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))))
6214, 44, 61pm5.21ndd 371 1 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wrex 3118  ∃!wreu 3119   cuni 4658  cmpt 4952  ccom 5346  wf 6119  cfv 6123  crio 6865  (class class class)co 6905  0cc0 10252  1c1 10253  [,]cicc 12466   Cn ccn 21399  𝑛-Locally cnlly 21639  IIcii 23048  PConncpconn 31747  SConncsconn 31748   CovMap ccvm 31783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-ec 8011  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-cn 21402  df-cnp 21403  df-cmp 21561  df-conn 21586  df-lly 21640  df-nlly 21641  df-tx 21736  df-hmeo 21929  df-xms 22495  df-ms 22496  df-tms 22497  df-ii 23050  df-htpy 23139  df-phtpy 23140  df-phtpc 23161  df-pco 23174  df-pconn 31749  df-sconn 31750  df-cvm 31784
This theorem is referenced by:  cvmlift3lem5  31851  cvmlift3lem6  31852  cvmlift3lem7  31853  cvmlift3lem9  31855
  Copyright terms: Public domain W3C validator