Proof of Theorem cvmlift3lem4
Step | Hyp | Ref
| Expression |
1 | | cvmlift3.b |
. . . . 5
⊢ 𝐵 = ∪
𝐶 |
2 | | cvmlift3.y |
. . . . 5
⊢ 𝑌 = ∪
𝐾 |
3 | | cvmlift3.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
4 | | cvmlift3.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ SConn) |
5 | | cvmlift3.l |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
PConn) |
6 | | cvmlift3.o |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
7 | | cvmlift3.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) |
8 | | cvmlift3.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
9 | | cvmlift3.e |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) |
10 | | cvmlift3.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cvmlift3lem3 33183 |
. . . 4
⊢ (𝜑 → 𝐻:𝑌⟶𝐵) |
12 | 11 | ffvelrnda 6943 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑋) ∈ 𝐵) |
13 | | eleq1 2826 |
. . 3
⊢ ((𝐻‘𝑋) = 𝐴 → ((𝐻‘𝑋) ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
14 | 12, 13 | syl5ibcom 244 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 → 𝐴 ∈ 𝐵)) |
15 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) |
16 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
17 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓 ∈ (II Cn 𝐾)) |
18 | 7 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐺 ∈ (𝐾 Cn 𝐽)) |
19 | | cnco 22325 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ 𝑓) ∈ (II Cn 𝐽)) |
20 | 17, 18, 19 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺 ∘ 𝑓) ∈ (II Cn 𝐽)) |
21 | 8 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑃 ∈ 𝐵) |
22 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑓‘0) = 𝑂) |
23 | 22 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺‘(𝑓‘0)) = (𝐺‘𝑂)) |
24 | | iiuni 23950 |
. . . . . . . . . . . . . . 15
⊢ (0[,]1) =
∪ II |
25 | 24, 2 | cnf 22305 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌) |
26 | 17, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓:(0[,]1)⟶𝑌) |
27 | | 0elunit 13130 |
. . . . . . . . . . . . 13
⊢ 0 ∈
(0[,]1) |
28 | | fvco3 6849 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) →
((𝐺 ∘ 𝑓)‘0) = (𝐺‘(𝑓‘0))) |
29 | 26, 27, 28 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝐺 ∘ 𝑓)‘0) = (𝐺‘(𝑓‘0))) |
30 | 9 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹‘𝑃) = (𝐺‘𝑂)) |
31 | 23, 29, 30 | 3eqtr4rd 2789 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹‘𝑃) = ((𝐺 ∘ 𝑓)‘0)) |
32 | 1, 15, 16, 20, 21, 31 | cvmliftiota 33163 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺 ∘ 𝑓) ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃)) |
33 | 32 | simp1d 1140 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶)) |
34 | 24, 1 | cnf 22305 |
. . . . . . . . 9
⊢
((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵) |
36 | | 1elunit 13131 |
. . . . . . . 8
⊢ 1 ∈
(0[,]1) |
37 | | ffvelrn 6941 |
. . . . . . . 8
⊢
(((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) →
((℩𝑔 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵) |
38 | 35, 36, 37 | sylancl 585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵) |
39 | | eleq1 2826 |
. . . . . . 7
⊢
(((℩𝑔
∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
40 | 38, 39 | syl5ibcom 244 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → 𝐴 ∈ 𝐵)) |
41 | 40 | expr 456 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → 𝐴 ∈ 𝐵))) |
42 | 41 | a1dd 50 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → ((𝑓‘1) = 𝑋 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → 𝐴 ∈ 𝐵)))) |
43 | 42 | 3impd 1346 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ 𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴 ∈ 𝐵)) |
44 | 43 | rexlimdva 3212 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴 ∈ 𝐵)) |
45 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝑓‘1) = 𝑥 ↔ (𝑓‘1) = 𝑋)) |
46 | 45 | 3anbi2d 1439 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
47 | 46 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
48 | 47 | riotabidv 7214 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
49 | | riotaex 7216 |
. . . . . . . 8
⊢
(℩𝑧
∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) ∈ V |
50 | 48, 10, 49 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑌 → (𝐻‘𝑋) = (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
51 | 50 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑋) = (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
52 | 51 | eqeq1d 2740 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 ↔ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴)) |
53 | 52 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ (𝜑 ∧ 𝑋 ∈ 𝑌)) → ((𝐻‘𝑋) = 𝐴 ↔ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴)) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cvmlift3lem2 33182 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) |
55 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)) |
56 | 55 | 3anbi3d 1440 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) |
57 | 56 | rexbidv 3225 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) |
58 | 57 | riota2 7238 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴)) |
59 | 54, 58 | sylan2 592 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ (𝜑 ∧ 𝑋 ∈ 𝑌)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴)) |
60 | 53, 59 | bitr4d 281 |
. . 3
⊢ ((𝐴 ∈ 𝐵 ∧ (𝜑 ∧ 𝑋 ∈ 𝑌)) → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) |
61 | 60 | expcom 413 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → (𝐴 ∈ 𝐵 → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))) |
62 | 14, 44, 61 | pm5.21ndd 380 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) |