Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem4 Structured version   Visualization version   GIF version

Theorem cvmlift3lem4 32800
Description: Lemma for cvmlift2 32794. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem4 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
Distinct variable groups:   𝑧,𝑓,𝐴   𝑓,𝑔,𝑧,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝑋,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐴(𝑥,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem4
StepHypRef Expression
1 cvmlift3.b . . . . 5 𝐵 = 𝐶
2 cvmlift3.y . . . . 5 𝑌 = 𝐾
3 cvmlift3.f . . . . 5 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . . . 5 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . . . 5 (𝜑𝑂𝑌)
7 cvmlift3.g . . . . 5 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . . . 5 (𝜑𝑃𝐵)
9 cvmlift3.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . . . 5 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 32799 . . . 4 (𝜑𝐻:𝑌𝐵)
1211ffvelrnda 6842 . . 3 ((𝜑𝑋𝑌) → (𝐻𝑋) ∈ 𝐵)
13 eleq1 2839 . . 3 ((𝐻𝑋) = 𝐴 → ((𝐻𝑋) ∈ 𝐵𝐴𝐵))
1412, 13syl5ibcom 248 . 2 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴𝐴𝐵))
15 eqid 2758 . . . . . . . . . . 11 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
163ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓 ∈ (II Cn 𝐾))
187ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 21966 . . . . . . . . . . . 12 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺𝑓) ∈ (II Cn 𝐽))
218ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑃𝐵)
22 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑓‘0) = 𝑂)
2322fveq2d 6662 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 23582 . . . . . . . . . . . . . . 15 (0[,]1) = II
2524, 2cnf 21946 . . . . . . . . . . . . . 14 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . 13 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 12901 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
28 fvco3 6751 . . . . . . . . . . . . 13 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 589 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
309ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2804 . . . . . . . . . . 11 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
321, 15, 16, 20, 21, 31cvmliftiota 32779 . . . . . . . . . 10 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp1d 1139 . . . . . . . . 9 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3424, 1cnf 21946 . . . . . . . . 9 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3533, 34syl 17 . . . . . . . 8 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
36 1elunit 12902 . . . . . . . 8 1 ∈ (0[,]1)
37 ffvelrn 6840 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
3835, 36, 37sylancl 589 . . . . . . 7 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵)
39 eleq1 2839 . . . . . . 7 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) ∈ 𝐵𝐴𝐵))
4038, 39syl5ibcom 248 . . . . . 6 (((𝜑𝑋𝑌) ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = 𝑂)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵))
4140expr 460 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵)))
4241a1dd 50 . . . 4 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = 𝑂 → ((𝑓‘1) = 𝑋 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴𝐴𝐵))))
43423impd 1345 . . 3 (((𝜑𝑋𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴𝐵))
4443rexlimdva 3208 . 2 ((𝜑𝑋𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) → 𝐴𝐵))
45 eqeq2 2770 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝑓‘1) = 𝑥 ↔ (𝑓‘1) = 𝑋))
46453anbi2d 1438 . . . . . . . . . 10 (𝑥 = 𝑋 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4746rexbidv 3221 . . . . . . . . 9 (𝑥 = 𝑋 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4847riotabidv 7110 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
49 riotaex 7112 . . . . . . . 8 (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) ∈ V
5048, 10, 49fvmpt 6759 . . . . . . 7 (𝑋𝑌 → (𝐻𝑋) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
5150adantl 485 . . . . . 6 ((𝜑𝑋𝑌) → (𝐻𝑋) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
5251eqeq1d 2760 . . . . 5 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
5352adantl 485 . . . 4 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → ((𝐻𝑋) = 𝐴 ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
541, 2, 3, 4, 5, 6, 7, 8, 9cvmlift3lem2 32798 . . . . 5 ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
55 eqeq2 2770 . . . . . . . 8 (𝑧 = 𝐴 → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))
56553anbi3d 1439 . . . . . . 7 (𝑧 = 𝐴 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
5756rexbidv 3221 . . . . . 6 (𝑧 = 𝐴 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
5857riota2 7133 . . . . 5 ((𝐴𝐵 ∧ ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
5954, 58sylan2 595 . . . 4 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴) ↔ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) = 𝐴))
6053, 59bitr4d 285 . . 3 ((𝐴𝐵 ∧ (𝜑𝑋𝑌)) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
6160expcom 417 . 2 ((𝜑𝑋𝑌) → (𝐴𝐵 → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))))
6214, 44, 61pm5.21ndd 384 1 ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  ∃!wreu 3072   cuni 4798  cmpt 5112  ccom 5528  wf 6331  cfv 6335  crio 7107  (class class class)co 7150  0cc0 10575  1c1 10576  [,]cicc 12782   Cn ccn 21924  𝑛-Locally cnlly 22165  IIcii 23576  PConncpconn 32697  SConncsconn 32698   CovMap ccvm 32733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-ec 8301  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-cn 21927  df-cnp 21928  df-cmp 22087  df-conn 22112  df-lly 22166  df-nlly 22167  df-tx 22262  df-hmeo 22455  df-xms 23022  df-ms 23023  df-tms 23024  df-ii 23578  df-htpy 23671  df-phtpy 23672  df-phtpc 23693  df-pco 23706  df-pconn 32699  df-sconn 32700  df-cvm 32734
This theorem is referenced by:  cvmlift3lem5  32801  cvmlift3lem6  32802  cvmlift3lem7  32803  cvmlift3lem9  32805
  Copyright terms: Public domain W3C validator