Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1 47550
Description: Divisor of Fermat number (special form of Euler's result, see fmtnofac1 47555): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac1
StepHypRef Expression
1 breq1 5098 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 480 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 nnnn0 12409 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 fmtnoodd 47518 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 481 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 121 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
82, 7sylbid 240 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
109ex 412 . . 3 (𝑃 = 2 → (𝑁 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))))
11103impd 1349 . 2 (𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
12 simpr1 1195 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
13 neqne 2933 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 617 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4740 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 234 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 412 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 407 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1197 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac1lem 47549 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
2212, 19, 20, 21syl3anc 1373 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
23 prmnn 16603 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423ad2antll 729 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 𝑃 ∈ ℕ)
25 2z 12525 . . . . . . . 8 2 ∈ ℤ
2625a1i 11 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ∈ ℤ)
2713necomd 2980 . . . . . . . . 9 𝑃 = 2 → 2 ≠ 𝑃)
2827adantr 480 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ≠ 𝑃)
29 2prm 16621 . . . . . . . . . . . 12 2 ∈ ℙ
3029a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℙ)
3130anim1i 615 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
3231adantl 481 . . . . . . . . 9 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
33 prmrp 16641 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3432, 33syl 17 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3528, 34mpbird 257 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 gcd 𝑃) = 1)
36 odzphi 16726 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
3724, 26, 35, 36syl3anc 1373 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
38 phiprm 16706 . . . . . . . . 9 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
3938ad2antll 729 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (ϕ‘𝑃) = (𝑃 − 1))
4039breq2d 5107 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) ↔ ((od𝑃)‘2) ∥ (𝑃 − 1)))
41 breq1 5098 . . . . . . . . . . 11 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
4241adantl 481 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
43 2nn 12219 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 2 ∈ ℕ)
45 peano2nn 12158 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
4645nnnn0d 12463 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
4744, 46nnexpcld 14170 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
4823nnnn0d 12463 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
49 prmuz2 16625 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
50 eluzle 12766 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
5149, 50syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ≤ 𝑃)
52 nn0ge2m1nn 12472 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ0 ∧ 2 ≤ 𝑃) → (𝑃 − 1) ∈ ℕ)
5348, 51, 52syl2anc 584 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
5447, 53anim12i 613 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
5554adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
56 nndivides 16191 . . . . . . . . . . . . 13 (((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
5755, 56syl 17 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
58 eqcom 2736 . . . . . . . . . . . . . . . 16 ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))))
5958a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1)))))
6023nncnd 12162 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
63 1cnd 11129 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
64 nncn 12154 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6564adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
66 peano2nn0 12442 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
673, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
6844, 67nnexpcld 14170 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
6968nncnd 12162 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℂ)
7069adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(𝑁 + 1)) ∈ ℂ)
7170adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
7265, 71mulcld 11154 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
7362, 63, 72subadd2d 11512 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
7473adantll 714 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
75 eqcom 2736 . . . . . . . . . . . . . . . 16 (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
7675a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7759, 74, 763bitrd 305 . . . . . . . . . . . . . 14 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7877rexbidva 3151 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7978biimpd 229 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8057, 79sylbid 240 . . . . . . . . . . 11 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8180adantr 480 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8242, 81sylbid 240 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8382ex 412 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8483com23 86 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8540, 84sylbid 240 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8637, 85mpd 15 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
87863adantr3 1172 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8822, 87mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
8988ex 412 . 2 𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9011, 89pm2.61i 182 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3902  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cexp 13986  cdvds 16181   gcd cgcd 16423  cprime 16600  odcodz 16692  ϕcphi 16693  FermatNocfmtno 47512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-odz 16694  df-phi 16695  df-pc 16767  df-fmtno 47513
This theorem is referenced by:  fmtnoprmfac2lem1  47551
  Copyright terms: Public domain W3C validator