Proof of Theorem fmtnoprmfac1
Step | Hyp | Ref
| Expression |
1 | | breq1 5073 |
. . . . . . 7
⊢ (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁))) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁))) |
3 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
4 | | fmtnoodd 44873 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ¬ 2 ∥ (FermatNo‘𝑁)) |
5 | 3, 4 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ¬ 2
∥ (FermatNo‘𝑁)) |
6 | 5 | adantl 481 |
. . . . . . 7
⊢ ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥
(FermatNo‘𝑁)) |
7 | 6 | pm2.21d 121 |
. . . . . 6
⊢ ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (2 ∥
(FermatNo‘𝑁) →
∃𝑘 ∈ ℕ
𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
8 | 2, 7 | sylbid 239 |
. . . . 5
⊢ ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
9 | 8 | a1d 25 |
. . . 4
⊢ ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))) |
10 | 9 | ex 412 |
. . 3
⊢ (𝑃 = 2 → (𝑁 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))) |
11 | 10 | 3impd 1346 |
. 2
⊢ (𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
12 | | simpr1 1192 |
. . . . 5
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ) |
13 | | neqne 2950 |
. . . . . . . . . 10
⊢ (¬
𝑃 = 2 → 𝑃 ≠ 2) |
14 | 13 | anim2i 616 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ ¬
𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) |
15 | | eldifsn 4717 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
↔ (𝑃 ∈ ℙ
∧ 𝑃 ≠
2)) |
16 | 14, 15 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ¬
𝑃 = 2) → 𝑃 ∈ (ℙ ∖
{2})) |
17 | 16 | ex 412 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → (¬
𝑃 = 2 → 𝑃 ∈ (ℙ ∖
{2}))) |
18 | 17 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖
{2}))) |
19 | 18 | impcom 407 |
. . . . 5
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖
{2})) |
20 | | simpr3 1194 |
. . . . 5
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁)) |
21 | | fmtnoprmfac1lem 44904 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})
∧ 𝑃 ∥
(FermatNo‘𝑁)) →
((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) |
22 | 12, 19, 20, 21 | syl3anc 1369 |
. . . 4
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) →
((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) |
23 | | prmnn 16307 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
24 | 23 | ad2antll 725 |
. . . . . . 7
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 𝑃 ∈
ℕ) |
25 | | 2z 12282 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2
∈ ℤ) |
27 | 13 | necomd 2998 |
. . . . . . . . 9
⊢ (¬
𝑃 = 2 → 2 ≠ 𝑃) |
28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ≠
𝑃) |
29 | | 2prm 16325 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℙ |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 2 ∈
ℙ) |
31 | 30 | anim1i 614 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
∈ ℙ ∧ 𝑃
∈ ℙ)) |
32 | 31 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2
∈ ℙ ∧ 𝑃
∈ ℙ)) |
33 | | prmrp 16345 |
. . . . . . . . 9
⊢ ((2
∈ ℙ ∧ 𝑃
∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃)) |
34 | 32, 33 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2 gcd
𝑃) = 1 ↔ 2 ≠ 𝑃)) |
35 | 28, 34 | mpbird 256 |
. . . . . . 7
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 gcd
𝑃) = 1) |
36 | | odzphi 16425 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 2 ∈
ℤ ∧ (2 gcd 𝑃) =
1) → ((odℤ‘𝑃)‘2) ∥ (ϕ‘𝑃)) |
37 | 24, 26, 35, 36 | syl3anc 1369 |
. . . . . 6
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
((odℤ‘𝑃)‘2) ∥ (ϕ‘𝑃)) |
38 | | phiprm 16406 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ →
(ϕ‘𝑃) = (𝑃 − 1)) |
39 | 38 | ad2antll 725 |
. . . . . . . 8
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(ϕ‘𝑃) = (𝑃 − 1)) |
40 | 39 | breq2d 5082 |
. . . . . . 7
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(((odℤ‘𝑃)‘2) ∥ (ϕ‘𝑃) ↔
((odℤ‘𝑃)‘2) ∥ (𝑃 − 1))) |
41 | | breq1 5073 |
. . . . . . . . . . 11
⊢
(((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1)) →
(((odℤ‘𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1))) |
42 | 41 | adantl 481 |
. . . . . . . . . 10
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧
((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) →
(((odℤ‘𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1))) |
43 | | 2nn 11976 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → 2 ∈
ℕ) |
45 | | peano2nn 11915 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
46 | 45 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ0) |
47 | 44, 46 | nnexpcld 13888 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ →
(2↑(𝑁 + 1)) ∈
ℕ) |
48 | 23 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) |
49 | | prmuz2 16329 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
50 | | eluzle 12524 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈
(ℤ≥‘2) → 2 ≤ 𝑃) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 2 ≤
𝑃) |
52 | | nn0ge2m1nn 12232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℕ0
∧ 2 ≤ 𝑃) →
(𝑃 − 1) ∈
ℕ) |
53 | 48, 51, 52 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → (𝑃 − 1) ∈
ℕ) |
54 | 47, 53 | anim12i 612 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
((2↑(𝑁 + 1)) ∈
ℕ ∧ (𝑃 − 1)
∈ ℕ)) |
55 | 54 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
((2↑(𝑁 + 1)) ∈
ℕ ∧ (𝑃 − 1)
∈ ℕ)) |
56 | | nndivides 15901 |
. . . . . . . . . . . . 13
⊢
(((2↑(𝑁 + 1))
∈ ℕ ∧ (𝑃
− 1) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1))) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . 12
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
((2↑(𝑁 + 1)) ∥
(𝑃 − 1) ↔
∃𝑘 ∈ ℕ
(𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1))) |
58 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1)))) |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))))) |
60 | 23 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℂ) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℂ) |
62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈
ℂ) |
63 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈
ℂ) |
64 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
65 | 64 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
ℂ) |
66 | | peano2nn0 12203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
67 | 3, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ0) |
68 | 44, 67 | nnexpcld 13888 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ →
(2↑(𝑁 + 1)) ∈
ℕ) |
69 | 68 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ →
(2↑(𝑁 + 1)) ∈
ℂ) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(2↑(𝑁 + 1)) ∈
ℂ) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) →
(2↑(𝑁 + 1)) ∈
ℂ) |
72 | 65, 71 | mulcld 10926 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈
ℂ) |
73 | 62, 63, 72 | subadd2d 11281 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃)) |
74 | 73 | adantll 710 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃)) |
75 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃 ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) |
76 | 75 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃 ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
77 | 59, 74, 76 | 3bitrd 304 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
78 | 77 | rexbidva 3224 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(∃𝑘 ∈ ℕ
(𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
79 | 78 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(∃𝑘 ∈ ℕ
(𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
80 | 57, 79 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
((2↑(𝑁 + 1)) ∥
(𝑃 − 1) →
∃𝑘 ∈ ℕ
𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧
((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
82 | 42, 81 | sylbid 239 |
. . . . . . . . 9
⊢ (((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧
((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1))) →
(((odℤ‘𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
83 | 82 | ex 412 |
. . . . . . . 8
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1)) →
(((odℤ‘𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))) |
84 | 83 | com23 86 |
. . . . . . 7
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(((odℤ‘𝑃)‘2) ∥ (𝑃 − 1) →
(((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))) |
85 | 40, 84 | sylbid 239 |
. . . . . 6
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(((odℤ‘𝑃)‘2) ∥ (ϕ‘𝑃) →
(((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))) |
86 | 37, 85 | mpd 15 |
. . . . 5
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) →
(((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
87 | 86 | 3adantr3 1169 |
. . . 4
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) →
(((odℤ‘𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
88 | 22, 87 | mpd 15 |
. . 3
⊢ ((¬
𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) |
89 | 88 | ex 412 |
. 2
⊢ (¬
𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))) |
90 | 11, 89 | pm2.61i 182 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) |