Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1 47570
Description: Divisor of Fermat number (special form of Euler's result, see fmtnofac1 47575): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac1
StepHypRef Expression
1 breq1 5113 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 480 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 nnnn0 12456 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 fmtnoodd 47538 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 481 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 121 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
82, 7sylbid 240 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
109ex 412 . . 3 (𝑃 = 2 → (𝑁 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))))
11103impd 1349 . 2 (𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
12 simpr1 1195 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
13 neqne 2934 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 617 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4753 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 234 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 412 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 407 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1197 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac1lem 47569 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
2212, 19, 20, 21syl3anc 1373 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
23 prmnn 16651 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423ad2antll 729 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 𝑃 ∈ ℕ)
25 2z 12572 . . . . . . . 8 2 ∈ ℤ
2625a1i 11 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ∈ ℤ)
2713necomd 2981 . . . . . . . . 9 𝑃 = 2 → 2 ≠ 𝑃)
2827adantr 480 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ≠ 𝑃)
29 2prm 16669 . . . . . . . . . . . 12 2 ∈ ℙ
3029a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℙ)
3130anim1i 615 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
3231adantl 481 . . . . . . . . 9 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
33 prmrp 16689 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3432, 33syl 17 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3528, 34mpbird 257 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 gcd 𝑃) = 1)
36 odzphi 16774 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
3724, 26, 35, 36syl3anc 1373 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
38 phiprm 16754 . . . . . . . . 9 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
3938ad2antll 729 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (ϕ‘𝑃) = (𝑃 − 1))
4039breq2d 5122 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) ↔ ((od𝑃)‘2) ∥ (𝑃 − 1)))
41 breq1 5113 . . . . . . . . . . 11 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
4241adantl 481 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
43 2nn 12266 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 2 ∈ ℕ)
45 peano2nn 12205 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
4645nnnn0d 12510 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
4744, 46nnexpcld 14217 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
4823nnnn0d 12510 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
49 prmuz2 16673 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
50 eluzle 12813 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
5149, 50syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ≤ 𝑃)
52 nn0ge2m1nn 12519 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ0 ∧ 2 ≤ 𝑃) → (𝑃 − 1) ∈ ℕ)
5348, 51, 52syl2anc 584 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
5447, 53anim12i 613 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
5554adantl 481 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
56 nndivides 16239 . . . . . . . . . . . . 13 (((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
5755, 56syl 17 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
58 eqcom 2737 . . . . . . . . . . . . . . . 16 ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))))
5958a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1)))))
6023nncnd 12209 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
63 1cnd 11176 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
64 nncn 12201 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6564adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
66 peano2nn0 12489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
673, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
6844, 67nnexpcld 14217 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
6968nncnd 12209 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℂ)
7069adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(𝑁 + 1)) ∈ ℂ)
7170adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
7265, 71mulcld 11201 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
7362, 63, 72subadd2d 11559 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
7473adantll 714 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
75 eqcom 2737 . . . . . . . . . . . . . . . 16 (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
7675a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7759, 74, 763bitrd 305 . . . . . . . . . . . . . 14 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7877rexbidva 3156 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7978biimpd 229 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8057, 79sylbid 240 . . . . . . . . . . 11 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8180adantr 480 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8242, 81sylbid 240 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8382ex 412 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8483com23 86 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8540, 84sylbid 240 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8637, 85mpd 15 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
87863adantr3 1172 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8822, 87mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
8988ex 412 . 2 𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9011, 89pm2.61i 182 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  cexp 14033  cdvds 16229   gcd cgcd 16471  cprime 16648  odcodz 16740  ϕcphi 16741  FermatNocfmtno 47532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-pc 16815  df-fmtno 47533
This theorem is referenced by:  fmtnoprmfac2lem1  47571
  Copyright terms: Public domain W3C validator