MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsupprpr Structured version   Visualization version   GIF version

Theorem infsupprpr 9542
Description: The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023.)
Assertion
Ref Expression
infsupprpr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅))

Proof of Theorem infsupprpr
StepHypRef Expression
1 solin 5623 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
213adantr3 1170 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
3 iftrue 4537 . . . . . . 7 (𝐵𝑅𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶) = 𝐵)
43adantr 480 . . . . . 6 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶) = 𝐵)
5 sotric 5626 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
653adantr3 1170 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
76biimpac 478 . . . . . . 7 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → ¬ (𝐵 = 𝐶𝐶𝑅𝐵))
8 ioran 985 . . . . . . . 8 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))
9 simprl 771 . . . . . . . . . 10 ((¬ 𝐶𝑅𝐵 ∧ (𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)))) → 𝐵𝑅𝐶)
10 iffalse 4540 . . . . . . . . . . 11 𝐶𝑅𝐵 → if(𝐶𝑅𝐵, 𝐵, 𝐶) = 𝐶)
1110adantr 480 . . . . . . . . . 10 ((¬ 𝐶𝑅𝐵 ∧ (𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)))) → if(𝐶𝑅𝐵, 𝐵, 𝐶) = 𝐶)
129, 11breqtrrd 5176 . . . . . . . . 9 ((¬ 𝐶𝑅𝐵 ∧ (𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
1312ex 412 . . . . . . . 8 𝐶𝑅𝐵 → ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
148, 13simplbiim 504 . . . . . . 7 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
157, 14mpcom 38 . . . . . 6 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
164, 15eqbrtrd 5170 . . . . 5 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
1716ex 412 . . . 4 (𝐵𝑅𝐶 → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
18 eqneqall 2949 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
19182a1d 26 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐴 → (𝐶𝐴 → (𝐵𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))))
20193impd 1347 . . . . 5 (𝐵 = 𝐶 → ((𝐵𝐴𝐶𝐴𝐵𝐶) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
2120adantld 490 . . . 4 (𝐵 = 𝐶 → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
22 pm3.22 459 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → (𝐶𝐴𝐵𝐴))
23223adant3 1131 . . . . . . . 8 ((𝐵𝐴𝐶𝐴𝐵𝐶) → (𝐶𝐴𝐵𝐴))
24 sotric 5626 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
2524biimpd 229 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 → ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
2623, 25sylan2 593 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐶𝑅𝐵 → ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
2726impcom 407 . . . . . 6 ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → ¬ (𝐶 = 𝐵𝐵𝑅𝐶))
28 ioran 985 . . . . . . 7 (¬ (𝐶 = 𝐵𝐵𝑅𝐶) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐵𝑅𝐶))
29 simpr 484 . . . . . . . . . 10 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐶𝑅𝐵)
30 iffalse 4540 . . . . . . . . . . 11 𝐵𝑅𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶) = 𝐶)
31 iftrue 4537 . . . . . . . . . . 11 (𝐶𝑅𝐵 → if(𝐶𝑅𝐵, 𝐵, 𝐶) = 𝐵)
3230, 31breqan12d 5164 . . . . . . . . . 10 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → (if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶) ↔ 𝐶𝑅𝐵))
3329, 32mpbird 257 . . . . . . . . 9 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
3433a1d 25 . . . . . . . 8 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3534expimpd 453 . . . . . . 7 𝐵𝑅𝐶 → ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3628, 35simplbiim 504 . . . . . 6 (¬ (𝐶 = 𝐵𝐵𝑅𝐶) → ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3727, 36mpcom 38 . . . . 5 ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
3837ex 412 . . . 4 (𝐶𝑅𝐵 → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3917, 21, 383jaoi 1427 . . 3 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
402, 39mpcom 38 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
41 infpr 9541 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶))
42 suppr 9509 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶))
4341, 42breq12d 5161 . . 3 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅) ↔ if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
44433adant3r3 1183 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅) ↔ if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
4540, 44mpbird 257 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wne 2938  ifcif 4531  {cpr 4633   class class class wbr 5148   Or wor 5596  supcsup 9478  infcinf 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-po 5597  df-so 5598  df-cnv 5697  df-iota 6516  df-riota 7388  df-sup 9480  df-inf 9481
This theorem is referenced by:  prproropf1olem2  47429
  Copyright terms: Public domain W3C validator