Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mod42tp1mod8 Structured version   Visualization version   GIF version

Theorem mod42tp1mod8 47639
Description: If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
mod42tp1mod8 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)

Proof of Theorem mod42tp1mod8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 4nn 12208 . . . . 5 4 ∈ ℕ
21a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℕ)
3 3nn0 12399 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝑁 ∈ ℤ → 3 ∈ ℕ0)
5 3lt4 12294 . . . . 5 3 < 4
64, 5jctir 520 . . . 4 (𝑁 ∈ ℤ → (3 ∈ ℕ0 ∧ 3 < 4))
7 modremain 16319 . . . 4 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ ∧ (3 ∈ ℕ0 ∧ 3 < 4)) → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
82, 6, 7mpd3an23 1465 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
9 2cnd 12203 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 2 ∈ ℂ)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
11 4z 12506 . . . . . . . . . . . . . 14 4 ∈ ℤ
1211a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℤ)
1310, 12zmulcld 12583 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℤ)
1413zcnd 12578 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℂ)
15 3cn 12206 . . . . . . . . . . . 12 3 ∈ ℂ
1615a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 3 ∈ ℂ)
179, 14, 16adddid 11136 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((2 · (𝑧 · 4)) + (2 · 3)))
1810zcnd 12578 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
19 4cn 12210 . . . . . . . . . . . . . 14 4 ∈ ℂ
2019a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℂ)
219, 18, 20mul12d 11322 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · (2 · 4)))
22 2cn 12200 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 4t2e8 12288 . . . . . . . . . . . . . 14 (4 · 2) = 8
2419, 22, 23mulcomli 11121 . . . . . . . . . . . . 13 (2 · 4) = 8
2524oveq2i 7357 . . . . . . . . . . . 12 (𝑧 · (2 · 4)) = (𝑧 · 8)
2621, 25eqtrdi 2782 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · 8))
27 3t2e6 12286 . . . . . . . . . . . . 13 (3 · 2) = 6
2815, 22, 27mulcomli 11121 . . . . . . . . . . . 12 (2 · 3) = 6
2928a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · 3) = 6)
3026, 29oveq12d 7364 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · (𝑧 · 4)) + (2 · 3)) = ((𝑧 · 8) + 6))
3117, 30eqtrd 2766 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((𝑧 · 8) + 6))
3231oveq1d 7361 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = (((𝑧 · 8) + 6) + 1))
33 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℤ)
34 8nn 12220 . . . . . . . . . . . . . . 15 8 ∈ ℕ
3534nnzi 12496 . . . . . . . . . . . . . 14 8 ∈ ℤ
3635a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 8 ∈ ℤ)
3733, 36zmulcld 12583 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℤ)
3837zcnd 12578 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℂ)
39 6cn 12216 . . . . . . . . . . . 12 6 ∈ ℂ
4039a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 6 ∈ ℂ)
41 1cnd 11107 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 1 ∈ ℂ)
4238, 40, 41addassd 11134 . . . . . . . . . 10 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + (6 + 1)))
43 6p1e7 12268 . . . . . . . . . . . 12 (6 + 1) = 7
4443a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (6 + 1) = 7)
4544oveq2d 7362 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 · 8) + (6 + 1)) = ((𝑧 · 8) + 7))
4642, 45eqtrd 2766 . . . . . . . . 9 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4746adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4832, 47eqtrd 2766 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = ((𝑧 · 8) + 7))
4948oveq1d 7361 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((𝑧 · 8) + 7) mod 8))
50 nnrp 12902 . . . . . . . . 9 (8 ∈ ℕ → 8 ∈ ℝ+)
5134, 50mp1i 13 . . . . . . . 8 (𝑧 ∈ ℤ → 8 ∈ ℝ+)
52 0xr 11159 . . . . . . . . . 10 0 ∈ ℝ*
5352a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ∈ ℝ*)
54 8re 12221 . . . . . . . . . . 11 8 ∈ ℝ
5554rexri 11170 . . . . . . . . . 10 8 ∈ ℝ*
5655a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 8 ∈ ℝ*)
57 7re 12218 . . . . . . . . . . 11 7 ∈ ℝ
5857rexri 11170 . . . . . . . . . 10 7 ∈ ℝ*
5958a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 ∈ ℝ*)
60 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
61 7pos 12236 . . . . . . . . . . 11 0 < 7
6260, 57, 61ltleii 11236 . . . . . . . . . 10 0 ≤ 7
6362a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ≤ 7)
64 7lt8 12312 . . . . . . . . . 10 7 < 8
6564a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 < 8)
6653, 56, 59, 63, 65elicod 13295 . . . . . . . 8 (𝑧 ∈ ℤ → 7 ∈ (0[,)8))
67 muladdmodid 13817 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 8 ∈ ℝ+ ∧ 7 ∈ (0[,)8)) → (((𝑧 · 8) + 7) mod 8) = 7)
6851, 66, 67mpd3an23 1465 . . . . . . 7 (𝑧 ∈ ℤ → (((𝑧 · 8) + 7) mod 8) = 7)
6968adantl 481 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 7) mod 8) = 7)
7049, 69eqtrd 2766 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7)
71 oveq2 7354 . . . . . . . 8 (((𝑧 · 4) + 3) = 𝑁 → (2 · ((𝑧 · 4) + 3)) = (2 · 𝑁))
7271oveq1d 7361 . . . . . . 7 (((𝑧 · 4) + 3) = 𝑁 → ((2 · ((𝑧 · 4) + 3)) + 1) = ((2 · 𝑁) + 1))
7372oveq1d 7361 . . . . . 6 (((𝑧 · 4) + 3) = 𝑁 → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((2 · 𝑁) + 1) mod 8))
7473eqeq1d 2733 . . . . 5 (((𝑧 · 4) + 3) = 𝑁 → ((((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7 ↔ (((2 · 𝑁) + 1) mod 8) = 7))
7570, 74syl5ibcom 245 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
7675rexlimdva 3133 . . 3 (𝑁 ∈ ℤ → (∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
778, 76sylbid 240 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 → (((2 · 𝑁) + 1) mod 8) = 7))
7877imp 406 1 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cn 12125  2c2 12180  3c3 12181  4c4 12182  6c6 12184  7c7 12185  8c8 12186  0cn0 12381  cz 12468  +crp 12890  [,)cico 13247   mod cmo 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  sgprmdvdsmersenne  47641
  Copyright terms: Public domain W3C validator