Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mod42tp1mod8 Structured version   Visualization version   GIF version

Theorem mod42tp1mod8 45784
Description: If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
mod42tp1mod8 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)

Proof of Theorem mod42tp1mod8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 4nn 12236 . . . . 5 4 ∈ ℕ
21a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℕ)
3 3nn0 12431 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝑁 ∈ ℤ → 3 ∈ ℕ0)
5 3lt4 12327 . . . . 5 3 < 4
64, 5jctir 521 . . . 4 (𝑁 ∈ ℤ → (3 ∈ ℕ0 ∧ 3 < 4))
7 modremain 16290 . . . 4 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ ∧ (3 ∈ ℕ0 ∧ 3 < 4)) → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
82, 6, 7mpd3an23 1463 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
9 2cnd 12231 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 2 ∈ ℂ)
10 simpr 485 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
11 4z 12537 . . . . . . . . . . . . . 14 4 ∈ ℤ
1211a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℤ)
1310, 12zmulcld 12613 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℤ)
1413zcnd 12608 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℂ)
15 3cn 12234 . . . . . . . . . . . 12 3 ∈ ℂ
1615a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 3 ∈ ℂ)
179, 14, 16adddid 11179 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((2 · (𝑧 · 4)) + (2 · 3)))
1810zcnd 12608 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
19 4cn 12238 . . . . . . . . . . . . . 14 4 ∈ ℂ
2019a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℂ)
219, 18, 20mul12d 11364 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · (2 · 4)))
22 2cn 12228 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 4t2e8 12321 . . . . . . . . . . . . . 14 (4 · 2) = 8
2419, 22, 23mulcomli 11164 . . . . . . . . . . . . 13 (2 · 4) = 8
2524oveq2i 7368 . . . . . . . . . . . 12 (𝑧 · (2 · 4)) = (𝑧 · 8)
2621, 25eqtrdi 2792 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · 8))
27 3t2e6 12319 . . . . . . . . . . . . 13 (3 · 2) = 6
2815, 22, 27mulcomli 11164 . . . . . . . . . . . 12 (2 · 3) = 6
2928a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · 3) = 6)
3026, 29oveq12d 7375 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · (𝑧 · 4)) + (2 · 3)) = ((𝑧 · 8) + 6))
3117, 30eqtrd 2776 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((𝑧 · 8) + 6))
3231oveq1d 7372 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = (((𝑧 · 8) + 6) + 1))
33 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℤ)
34 8nn 12248 . . . . . . . . . . . . . . 15 8 ∈ ℕ
3534nnzi 12527 . . . . . . . . . . . . . 14 8 ∈ ℤ
3635a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 8 ∈ ℤ)
3733, 36zmulcld 12613 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℤ)
3837zcnd 12608 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℂ)
39 6cn 12244 . . . . . . . . . . . 12 6 ∈ ℂ
4039a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 6 ∈ ℂ)
41 1cnd 11150 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 1 ∈ ℂ)
4238, 40, 41addassd 11177 . . . . . . . . . 10 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + (6 + 1)))
43 6p1e7 12301 . . . . . . . . . . . 12 (6 + 1) = 7
4443a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (6 + 1) = 7)
4544oveq2d 7373 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 · 8) + (6 + 1)) = ((𝑧 · 8) + 7))
4642, 45eqtrd 2776 . . . . . . . . 9 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4746adantl 482 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4832, 47eqtrd 2776 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = ((𝑧 · 8) + 7))
4948oveq1d 7372 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((𝑧 · 8) + 7) mod 8))
50 nnrp 12926 . . . . . . . . 9 (8 ∈ ℕ → 8 ∈ ℝ+)
5134, 50mp1i 13 . . . . . . . 8 (𝑧 ∈ ℤ → 8 ∈ ℝ+)
52 0xr 11202 . . . . . . . . . 10 0 ∈ ℝ*
5352a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ∈ ℝ*)
54 8re 12249 . . . . . . . . . . 11 8 ∈ ℝ
5554rexri 11213 . . . . . . . . . 10 8 ∈ ℝ*
5655a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 8 ∈ ℝ*)
57 7re 12246 . . . . . . . . . . 11 7 ∈ ℝ
5857rexri 11213 . . . . . . . . . 10 7 ∈ ℝ*
5958a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 ∈ ℝ*)
60 0re 11157 . . . . . . . . . . 11 0 ∈ ℝ
61 7pos 12264 . . . . . . . . . . 11 0 < 7
6260, 57, 61ltleii 11278 . . . . . . . . . 10 0 ≤ 7
6362a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ≤ 7)
64 7lt8 12345 . . . . . . . . . 10 7 < 8
6564a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 < 8)
6653, 56, 59, 63, 65elicod 13314 . . . . . . . 8 (𝑧 ∈ ℤ → 7 ∈ (0[,)8))
67 muladdmodid 13816 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 8 ∈ ℝ+ ∧ 7 ∈ (0[,)8)) → (((𝑧 · 8) + 7) mod 8) = 7)
6851, 66, 67mpd3an23 1463 . . . . . . 7 (𝑧 ∈ ℤ → (((𝑧 · 8) + 7) mod 8) = 7)
6968adantl 482 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 7) mod 8) = 7)
7049, 69eqtrd 2776 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7)
71 oveq2 7365 . . . . . . . 8 (((𝑧 · 4) + 3) = 𝑁 → (2 · ((𝑧 · 4) + 3)) = (2 · 𝑁))
7271oveq1d 7372 . . . . . . 7 (((𝑧 · 4) + 3) = 𝑁 → ((2 · ((𝑧 · 4) + 3)) + 1) = ((2 · 𝑁) + 1))
7372oveq1d 7372 . . . . . 6 (((𝑧 · 4) + 3) = 𝑁 → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((2 · 𝑁) + 1) mod 8))
7473eqeq1d 2738 . . . . 5 (((𝑧 · 4) + 3) = 𝑁 → ((((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7 ↔ (((2 · 𝑁) + 1) mod 8) = 7))
7570, 74syl5ibcom 244 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
7675rexlimdva 3152 . . 3 (𝑁 ∈ ℤ → (∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
778, 76sylbid 239 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 → (((2 · 𝑁) + 1) mod 8) = 7))
7877imp 407 1 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cn 12153  2c2 12208  3c3 12209  4c4 12210  6c6 12212  7c7 12213  8c8 12214  0cn0 12413  cz 12499  +crp 12915  [,)cico 13266   mod cmo 13774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137
This theorem is referenced by:  sgprmdvdsmersenne  45786
  Copyright terms: Public domain W3C validator