Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mod42tp1mod8 Structured version   Visualization version   GIF version

Theorem mod42tp1mod8 44942
Description: If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
mod42tp1mod8 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)

Proof of Theorem mod42tp1mod8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 4nn 11986 . . . . 5 4 ∈ ℕ
21a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℕ)
3 3nn0 12181 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝑁 ∈ ℤ → 3 ∈ ℕ0)
5 3lt4 12077 . . . . 5 3 < 4
64, 5jctir 520 . . . 4 (𝑁 ∈ ℤ → (3 ∈ ℕ0 ∧ 3 < 4))
7 modremain 16045 . . . 4 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ ∧ (3 ∈ ℕ0 ∧ 3 < 4)) → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
82, 6, 7mpd3an23 1461 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
9 2cnd 11981 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 2 ∈ ℂ)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
11 4z 12284 . . . . . . . . . . . . . 14 4 ∈ ℤ
1211a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℤ)
1310, 12zmulcld 12361 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℤ)
1413zcnd 12356 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℂ)
15 3cn 11984 . . . . . . . . . . . 12 3 ∈ ℂ
1615a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 3 ∈ ℂ)
179, 14, 16adddid 10930 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((2 · (𝑧 · 4)) + (2 · 3)))
1810zcnd 12356 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
19 4cn 11988 . . . . . . . . . . . . . 14 4 ∈ ℂ
2019a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℂ)
219, 18, 20mul12d 11114 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · (2 · 4)))
22 2cn 11978 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 4t2e8 12071 . . . . . . . . . . . . . 14 (4 · 2) = 8
2419, 22, 23mulcomli 10915 . . . . . . . . . . . . 13 (2 · 4) = 8
2524oveq2i 7266 . . . . . . . . . . . 12 (𝑧 · (2 · 4)) = (𝑧 · 8)
2621, 25eqtrdi 2795 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · 8))
27 3t2e6 12069 . . . . . . . . . . . . 13 (3 · 2) = 6
2815, 22, 27mulcomli 10915 . . . . . . . . . . . 12 (2 · 3) = 6
2928a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · 3) = 6)
3026, 29oveq12d 7273 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · (𝑧 · 4)) + (2 · 3)) = ((𝑧 · 8) + 6))
3117, 30eqtrd 2778 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((𝑧 · 8) + 6))
3231oveq1d 7270 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = (((𝑧 · 8) + 6) + 1))
33 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℤ)
34 8nn 11998 . . . . . . . . . . . . . . 15 8 ∈ ℕ
3534nnzi 12274 . . . . . . . . . . . . . 14 8 ∈ ℤ
3635a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 8 ∈ ℤ)
3733, 36zmulcld 12361 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℤ)
3837zcnd 12356 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℂ)
39 6cn 11994 . . . . . . . . . . . 12 6 ∈ ℂ
4039a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 6 ∈ ℂ)
41 1cnd 10901 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 1 ∈ ℂ)
4238, 40, 41addassd 10928 . . . . . . . . . 10 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + (6 + 1)))
43 6p1e7 12051 . . . . . . . . . . . 12 (6 + 1) = 7
4443a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (6 + 1) = 7)
4544oveq2d 7271 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 · 8) + (6 + 1)) = ((𝑧 · 8) + 7))
4642, 45eqtrd 2778 . . . . . . . . 9 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4746adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4832, 47eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = ((𝑧 · 8) + 7))
4948oveq1d 7270 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((𝑧 · 8) + 7) mod 8))
50 nnrp 12670 . . . . . . . . 9 (8 ∈ ℕ → 8 ∈ ℝ+)
5134, 50mp1i 13 . . . . . . . 8 (𝑧 ∈ ℤ → 8 ∈ ℝ+)
52 0xr 10953 . . . . . . . . . 10 0 ∈ ℝ*
5352a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ∈ ℝ*)
54 8re 11999 . . . . . . . . . . 11 8 ∈ ℝ
5554rexri 10964 . . . . . . . . . 10 8 ∈ ℝ*
5655a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 8 ∈ ℝ*)
57 7re 11996 . . . . . . . . . . 11 7 ∈ ℝ
5857rexri 10964 . . . . . . . . . 10 7 ∈ ℝ*
5958a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 ∈ ℝ*)
60 0re 10908 . . . . . . . . . . 11 0 ∈ ℝ
61 7pos 12014 . . . . . . . . . . 11 0 < 7
6260, 57, 61ltleii 11028 . . . . . . . . . 10 0 ≤ 7
6362a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ≤ 7)
64 7lt8 12095 . . . . . . . . . 10 7 < 8
6564a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 < 8)
6653, 56, 59, 63, 65elicod 13058 . . . . . . . 8 (𝑧 ∈ ℤ → 7 ∈ (0[,)8))
67 muladdmodid 13559 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 8 ∈ ℝ+ ∧ 7 ∈ (0[,)8)) → (((𝑧 · 8) + 7) mod 8) = 7)
6851, 66, 67mpd3an23 1461 . . . . . . 7 (𝑧 ∈ ℤ → (((𝑧 · 8) + 7) mod 8) = 7)
6968adantl 481 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 7) mod 8) = 7)
7049, 69eqtrd 2778 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7)
71 oveq2 7263 . . . . . . . 8 (((𝑧 · 4) + 3) = 𝑁 → (2 · ((𝑧 · 4) + 3)) = (2 · 𝑁))
7271oveq1d 7270 . . . . . . 7 (((𝑧 · 4) + 3) = 𝑁 → ((2 · ((𝑧 · 4) + 3)) + 1) = ((2 · 𝑁) + 1))
7372oveq1d 7270 . . . . . 6 (((𝑧 · 4) + 3) = 𝑁 → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((2 · 𝑁) + 1) mod 8))
7473eqeq1d 2740 . . . . 5 (((𝑧 · 4) + 3) = 𝑁 → ((((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7 ↔ (((2 · 𝑁) + 1) mod 8) = 7))
7570, 74syl5ibcom 244 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
7675rexlimdva 3212 . . 3 (𝑁 ∈ ℤ → (∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
778, 76sylbid 239 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 → (((2 · 𝑁) + 1) mod 8) = 7))
7877imp 406 1 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cn 11903  2c2 11958  3c3 11959  4c4 11960  6c6 11962  7c7 11963  8c8 11964  0cn0 12163  cz 12249  +crp 12659  [,)cico 13010   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892
This theorem is referenced by:  sgprmdvdsmersenne  44944
  Copyright terms: Public domain W3C validator