Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mod42tp1mod8 Structured version   Visualization version   GIF version

Theorem mod42tp1mod8 47607
Description: If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
mod42tp1mod8 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)

Proof of Theorem mod42tp1mod8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 4nn 12276 . . . . 5 4 ∈ ℕ
21a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℕ)
3 3nn0 12467 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝑁 ∈ ℤ → 3 ∈ ℕ0)
5 3lt4 12362 . . . . 5 3 < 4
64, 5jctir 520 . . . 4 (𝑁 ∈ ℤ → (3 ∈ ℕ0 ∧ 3 < 4))
7 modremain 16385 . . . 4 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ ∧ (3 ∈ ℕ0 ∧ 3 < 4)) → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
82, 6, 7mpd3an23 1465 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
9 2cnd 12271 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 2 ∈ ℂ)
10 simpr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
11 4z 12574 . . . . . . . . . . . . . 14 4 ∈ ℤ
1211a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℤ)
1310, 12zmulcld 12651 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℤ)
1413zcnd 12646 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℂ)
15 3cn 12274 . . . . . . . . . . . 12 3 ∈ ℂ
1615a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 3 ∈ ℂ)
179, 14, 16adddid 11205 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((2 · (𝑧 · 4)) + (2 · 3)))
1810zcnd 12646 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
19 4cn 12278 . . . . . . . . . . . . . 14 4 ∈ ℂ
2019a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℂ)
219, 18, 20mul12d 11390 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · (2 · 4)))
22 2cn 12268 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 4t2e8 12356 . . . . . . . . . . . . . 14 (4 · 2) = 8
2419, 22, 23mulcomli 11190 . . . . . . . . . . . . 13 (2 · 4) = 8
2524oveq2i 7401 . . . . . . . . . . . 12 (𝑧 · (2 · 4)) = (𝑧 · 8)
2621, 25eqtrdi 2781 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · 8))
27 3t2e6 12354 . . . . . . . . . . . . 13 (3 · 2) = 6
2815, 22, 27mulcomli 11190 . . . . . . . . . . . 12 (2 · 3) = 6
2928a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · 3) = 6)
3026, 29oveq12d 7408 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · (𝑧 · 4)) + (2 · 3)) = ((𝑧 · 8) + 6))
3117, 30eqtrd 2765 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((𝑧 · 8) + 6))
3231oveq1d 7405 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = (((𝑧 · 8) + 6) + 1))
33 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℤ)
34 8nn 12288 . . . . . . . . . . . . . . 15 8 ∈ ℕ
3534nnzi 12564 . . . . . . . . . . . . . 14 8 ∈ ℤ
3635a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 8 ∈ ℤ)
3733, 36zmulcld 12651 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℤ)
3837zcnd 12646 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℂ)
39 6cn 12284 . . . . . . . . . . . 12 6 ∈ ℂ
4039a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 6 ∈ ℂ)
41 1cnd 11176 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 1 ∈ ℂ)
4238, 40, 41addassd 11203 . . . . . . . . . 10 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + (6 + 1)))
43 6p1e7 12336 . . . . . . . . . . . 12 (6 + 1) = 7
4443a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (6 + 1) = 7)
4544oveq2d 7406 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 · 8) + (6 + 1)) = ((𝑧 · 8) + 7))
4642, 45eqtrd 2765 . . . . . . . . 9 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4746adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4832, 47eqtrd 2765 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = ((𝑧 · 8) + 7))
4948oveq1d 7405 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((𝑧 · 8) + 7) mod 8))
50 nnrp 12970 . . . . . . . . 9 (8 ∈ ℕ → 8 ∈ ℝ+)
5134, 50mp1i 13 . . . . . . . 8 (𝑧 ∈ ℤ → 8 ∈ ℝ+)
52 0xr 11228 . . . . . . . . . 10 0 ∈ ℝ*
5352a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ∈ ℝ*)
54 8re 12289 . . . . . . . . . . 11 8 ∈ ℝ
5554rexri 11239 . . . . . . . . . 10 8 ∈ ℝ*
5655a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 8 ∈ ℝ*)
57 7re 12286 . . . . . . . . . . 11 7 ∈ ℝ
5857rexri 11239 . . . . . . . . . 10 7 ∈ ℝ*
5958a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 ∈ ℝ*)
60 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
61 7pos 12304 . . . . . . . . . . 11 0 < 7
6260, 57, 61ltleii 11304 . . . . . . . . . 10 0 ≤ 7
6362a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ≤ 7)
64 7lt8 12380 . . . . . . . . . 10 7 < 8
6564a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 < 8)
6653, 56, 59, 63, 65elicod 13363 . . . . . . . 8 (𝑧 ∈ ℤ → 7 ∈ (0[,)8))
67 muladdmodid 13882 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 8 ∈ ℝ+ ∧ 7 ∈ (0[,)8)) → (((𝑧 · 8) + 7) mod 8) = 7)
6851, 66, 67mpd3an23 1465 . . . . . . 7 (𝑧 ∈ ℤ → (((𝑧 · 8) + 7) mod 8) = 7)
6968adantl 481 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 7) mod 8) = 7)
7049, 69eqtrd 2765 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7)
71 oveq2 7398 . . . . . . . 8 (((𝑧 · 4) + 3) = 𝑁 → (2 · ((𝑧 · 4) + 3)) = (2 · 𝑁))
7271oveq1d 7405 . . . . . . 7 (((𝑧 · 4) + 3) = 𝑁 → ((2 · ((𝑧 · 4) + 3)) + 1) = ((2 · 𝑁) + 1))
7372oveq1d 7405 . . . . . 6 (((𝑧 · 4) + 3) = 𝑁 → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((2 · 𝑁) + 1) mod 8))
7473eqeq1d 2732 . . . . 5 (((𝑧 · 4) + 3) = 𝑁 → ((((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7 ↔ (((2 · 𝑁) + 1) mod 8) = 7))
7570, 74syl5ibcom 245 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
7675rexlimdva 3135 . . 3 (𝑁 ∈ ℤ → (∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
778, 76sylbid 240 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 → (((2 · 𝑁) + 1) mod 8) = 7))
7877imp 406 1 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cn 12193  2c2 12248  3c3 12249  4c4 12250  6c6 12252  7c7 12253  8c8 12254  0cn0 12449  cz 12536  +crp 12958  [,)cico 13315   mod cmo 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230
This theorem is referenced by:  sgprmdvdsmersenne  47609
  Copyright terms: Public domain W3C validator