Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cznabel | Structured version Visualization version GIF version |
Description: The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020.) |
Ref | Expression |
---|---|
cznrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cznrng.b | ⊢ 𝐵 = (Base‘𝑌) |
cznrng.x | ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) |
Ref | Expression |
---|---|
cznabel | ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12268 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑁 ∈ ℕ0) |
3 | cznrng.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | 3 | zncrng 20780 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑌 ∈ CRing) |
6 | crngring 19823 | . . 3 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
7 | ringabl 19847 | . . 3 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Abel) | |
8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑌 ∈ Abel) |
9 | cznrng.x | . . . . 5 ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) | |
10 | 9 | fveq2i 6795 | . . . 4 ⊢ (Base‘𝑋) = (Base‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
11 | baseid 16943 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
12 | basendxnmulrndx 17033 | . . . . 5 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
13 | 11, 12 | setsnid 16938 | . . . 4 ⊢ (Base‘𝑌) = (Base‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
14 | 10, 13 | eqtr4i 2764 | . . 3 ⊢ (Base‘𝑋) = (Base‘𝑌) |
15 | 9 | fveq2i 6795 | . . . 4 ⊢ (+g‘𝑋) = (+g‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
16 | plusgid 17017 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
17 | plusgndxnmulrndx 17035 | . . . . 5 ⊢ (+g‘ndx) ≠ (.r‘ndx) | |
18 | 16, 17 | setsnid 16938 | . . . 4 ⊢ (+g‘𝑌) = (+g‘(𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉)) |
19 | 15, 18 | eqtr4i 2764 | . . 3 ⊢ (+g‘𝑋) = (+g‘𝑌) |
20 | 14, 19 | ablprop 19426 | . 2 ⊢ (𝑋 ∈ Abel ↔ 𝑌 ∈ Abel) |
21 | 8, 20 | sylibr 233 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 〈cop 4570 ‘cfv 6447 (class class class)co 7295 ∈ cmpo 7297 ℕcn 12001 ℕ0cn0 12261 sSet csts 16892 ndxcnx 16922 Basecbs 16940 +gcplusg 16990 .rcmulr 16991 Abelcabl 19415 Ringcrg 19811 CRingccrg 19812 ℤ/nℤczn 20732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-addf 10978 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-ec 8520 df-qs 8524 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-0g 17180 df-imas 17247 df-qus 17248 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-grp 18608 df-minusg 18609 df-sbg 18610 df-subg 18780 df-nsg 18781 df-eqg 18782 df-cmn 19416 df-abl 19417 df-mgp 19749 df-ur 19766 df-ring 19813 df-cring 19814 df-oppr 19890 df-subrg 20050 df-lmod 20153 df-lss 20222 df-lsp 20262 df-sra 20462 df-rgmod 20463 df-lidl 20464 df-rsp 20465 df-2idl 20531 df-cnfld 20626 df-zring 20699 df-zn 20736 |
This theorem is referenced by: cznrng 45553 |
Copyright terms: Public domain | W3C validator |