Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaabl Structured version   Visualization version   GIF version

Theorem dvaabl 40991
Description: The constructed partial vector space A for a lattice 𝐾 is an abelian group. (Contributed by NM, 11-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h 𝐻 = (LHyp‘𝐾)
dvalvec.v 𝑈 = ((DVecA‘𝐾)‘𝑊)
Assertion
Ref Expression
dvaabl ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)

Proof of Theorem dvaabl
Dummy variables 𝑓 𝑠 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2729 . . 3 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
3 eqid 2729 . . 3 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 eqid 2729 . . 3 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
5 dvalvec.v . . 3 𝑈 = ((DVecA‘𝐾)‘𝑊)
61, 2, 3, 4, 5dvaset 40972 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
7 eqid 2729 . . . . 5 ((TGrp‘𝐾)‘𝑊) = ((TGrp‘𝐾)‘𝑊)
81, 2, 7tgrpset 40712 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TGrp‘𝐾)‘𝑊) = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩})
91, 7tgrpabl 40718 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TGrp‘𝐾)‘𝑊) ∈ Abel)
108, 9eqeltrrd 2829 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩} ∈ Abel)
11 fvex 6853 . . . . 5 ((LTrn‘𝐾)‘𝑊) ∈ V
12 eqid 2729 . . . . . . 7 {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}
1312grpbase 17228 . . . . . 6 (((LTrn‘𝐾)‘𝑊) ∈ V → ((LTrn‘𝐾)‘𝑊) = (Base‘{⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}))
14 eqid 2729 . . . . . . 7 ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}) = ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})
1514lmodbase 17265 . . . . . 6 (((LTrn‘𝐾)‘𝑊) ∈ V → ((LTrn‘𝐾)‘𝑊) = (Base‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
1613, 15eqtr3d 2766 . . . . 5 (((LTrn‘𝐾)‘𝑊) ∈ V → (Base‘{⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}) = (Base‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
1711, 16ax-mp 5 . . . 4 (Base‘{⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}) = (Base‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
1811, 11mpoex 8037 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)) ∈ V
1912grpplusg 17229 . . . . . 6 ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)) = (+g‘{⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}))
2014lmodplusg 17266 . . . . . 6 ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)) ∈ V → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)) = (+g‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
2119, 20eqtr3d 2766 . . . . 5 ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔)) ∈ V → (+g‘{⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}) = (+g‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩})))
2218, 21ax-mp 5 . . . 4 (+g‘{⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩}) = (+g‘({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}))
2317, 22ablprop 19699 . . 3 ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩} ∈ Abel ↔ ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}) ∈ Abel)
2410, 23sylib 218 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ({⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑊)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊), 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝐾)‘𝑊)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ (𝑠𝑓))⟩}) ∈ Abel)
256, 24eqeltrd 2828 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  {csn 4585  {cpr 4587  {ctp 4589  cop 4591  ccom 5635  cfv 6499  cmpo 7371  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  Abelcabl 19687  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  TGrpctgrp 40709  TEndoctendo 40719  EDRingcedring 40720  DVecAcdveca 40969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-sca 17212  df-vsca 17213  df-0g 17380  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-cmn 19688  df-abl 19689  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-dveca 40970
This theorem is referenced by:  dvalveclem  40992
  Copyright terms: Public domain W3C validator