MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlmod Structured version   Visualization version   GIF version

Theorem zlmlmod 20728
Description: The -module operation turns an arbitrary abelian group into a left module over . Also see zlmassa 21106. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmlmod.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmlmod (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)

Proof of Theorem zlmlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmlmod.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2738 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 20720 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊))
5 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
61, 5zlmplusg 20722 . . . 4 (+g𝐺) = (+g𝑊)
76a1i 11 . . 3 (𝐺 ∈ Abel → (+g𝐺) = (+g𝑊))
81zlmsca 20726 . . 3 (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊))
9 eqid 2738 . . . . 5 (.g𝐺) = (.g𝐺)
101, 9zlmvsca 20727 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
1110a1i 11 . . 3 (𝐺 ∈ Abel → (.g𝐺) = ( ·𝑠𝑊))
12 zringbas 20676 . . . 4 ℤ = (Base‘ℤring)
1312a1i 11 . . 3 (𝐺 ∈ Abel → ℤ = (Base‘ℤring))
14 zringplusg 20677 . . . 4 + = (+g‘ℤring)
1514a1i 11 . . 3 (𝐺 ∈ Abel → + = (+g‘ℤring))
16 zringmulr 20679 . . . 4 · = (.r‘ℤring)
1716a1i 11 . . 3 (𝐺 ∈ Abel → · = (.r‘ℤring))
18 zring1 20681 . . . 4 1 = (1r‘ℤring)
1918a1i 11 . . 3 (𝐺 ∈ Abel → 1 = (1r‘ℤring))
20 zringring 20673 . . . 4 ring ∈ Ring
2120a1i 11 . . 3 (𝐺 ∈ Abel → ℤring ∈ Ring)
223, 6ablprop 19398 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel)
23 ablgrp 19391 . . . 4 (𝑊 ∈ Abel → 𝑊 ∈ Grp)
2422, 23sylbi 216 . . 3 (𝐺 ∈ Abel → 𝑊 ∈ Grp)
25 ablgrp 19391 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
262, 9mulgcl 18721 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
2725, 26syl3an1 1162 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
282, 9, 5mulgdi 19428 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.g𝐺)𝑦)(+g𝐺)(𝑥(.g𝐺)𝑧)))
292, 9, 5mulgdir 18735 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
3025, 29sylan 580 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
312, 9mulgass 18740 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
3225, 31sylan 580 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
332, 9mulg1 18711 . . . 4 (𝑥 ∈ (Base‘𝐺) → (1(.g𝐺)𝑥) = 𝑥)
3433adantl 482 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g𝐺)𝑥) = 𝑥)
354, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34islmodd 20129 . 2 (𝐺 ∈ Abel → 𝑊 ∈ LMod)
36 lmodabl 20170 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3736, 22sylibr 233 . 2 (𝑊 ∈ LMod → 𝐺 ∈ Abel)
3835, 37impbii 208 1 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874   · cmul 10876  cz 12319  Basecbs 16912  +gcplusg 16962  .rcmulr 16963   ·𝑠 cvsca 16966  Grpcgrp 18577  .gcmg 18700  Abelcabl 19387  1rcur 19737  Ringcrg 19783  LModclmod 20123  ringczring 20670  ℤModczlm 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-cnfld 20598  df-zring 20671  df-zlm 20706
This theorem is referenced by:  zlmassa  21106  zlmclm  24275  nmmulg  31918  cnzh  31920  rezh  31921
  Copyright terms: Public domain W3C validator