![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version |
Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. Also see zlmassa 21946. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
zlmlmod.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zlmlmod | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlmod.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 1, 2 | zlmbas 21552 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊)) |
5 | eqid 2740 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 1, 5 | zlmplusg 21554 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝑊) |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (+g‘𝐺) = (+g‘𝑊)) |
8 | 1 | zlmsca 21558 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
9 | eqid 2740 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
10 | 1, 9 | zlmvsca 21559 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
12 | zringbas 21487 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ = (Base‘ℤring)) |
14 | zringplusg 21488 | . . . 4 ⊢ + = (+g‘ℤring) | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → + = (+g‘ℤring)) |
16 | zringmulr 21491 | . . . 4 ⊢ · = (.r‘ℤring) | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → · = (.r‘ℤring)) |
18 | zring1 21493 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → 1 = (1r‘ℤring)) |
20 | zringring 21483 | . . . 4 ⊢ ℤring ∈ Ring | |
21 | 20 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring ∈ Ring) |
22 | 3, 6 | ablprop 19835 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel) |
23 | ablgrp 19827 | . . . 4 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ Grp) | |
24 | 22, 23 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ Grp) |
25 | ablgrp 19827 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
26 | 2, 9 | mulgcl 19131 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
27 | 25, 26 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
28 | 2, 9, 5 | mulgdi 19868 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.g‘𝐺)𝑦)(+g‘𝐺)(𝑥(.g‘𝐺)𝑧))) |
29 | 2, 9, 5 | mulgdir 19146 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
30 | 25, 29 | sylan 579 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
31 | 2, 9 | mulgass 19151 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
32 | 25, 31 | sylan 579 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
33 | 2, 9 | mulg1 19121 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺) → (1(.g‘𝐺)𝑥) = 𝑥) |
34 | 33 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g‘𝐺)𝑥) = 𝑥) |
35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 20886 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
36 | lmodabl 20929 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
37 | 36, 22 | sylibr 234 | . 2 ⊢ (𝑊 ∈ LMod → 𝐺 ∈ Abel) |
38 | 35, 37 | impbii 209 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 ℤcz 12639 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 ·𝑠 cvsca 17315 Grpcgrp 18973 .gcmg 19107 Abelcabl 19823 1rcur 20208 Ringcrg 20260 LModclmod 20880 ℤringczring 21480 ℤModczlm 21534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-cnfld 21388 df-zring 21481 df-zlm 21538 |
This theorem is referenced by: zlmassa 21946 zlmclm 25164 nmmulg 33914 cnzh 33916 rezh 33917 |
Copyright terms: Public domain | W3C validator |