MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlmod Structured version   Visualization version   GIF version

Theorem zlmlmod 21432
Description: The -module operation turns an arbitrary abelian group into a left module over . Also see zlmassa 21812. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmlmod.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmlmod (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)

Proof of Theorem zlmlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmlmod.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 21427 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊))
5 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
61, 5zlmplusg 21428 . . . 4 (+g𝐺) = (+g𝑊)
76a1i 11 . . 3 (𝐺 ∈ Abel → (+g𝐺) = (+g𝑊))
81zlmsca 21430 . . 3 (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊))
9 eqid 2729 . . . . 5 (.g𝐺) = (.g𝐺)
101, 9zlmvsca 21431 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
1110a1i 11 . . 3 (𝐺 ∈ Abel → (.g𝐺) = ( ·𝑠𝑊))
12 zringbas 21363 . . . 4 ℤ = (Base‘ℤring)
1312a1i 11 . . 3 (𝐺 ∈ Abel → ℤ = (Base‘ℤring))
14 zringplusg 21364 . . . 4 + = (+g‘ℤring)
1514a1i 11 . . 3 (𝐺 ∈ Abel → + = (+g‘ℤring))
16 zringmulr 21367 . . . 4 · = (.r‘ℤring)
1716a1i 11 . . 3 (𝐺 ∈ Abel → · = (.r‘ℤring))
18 zring1 21369 . . . 4 1 = (1r‘ℤring)
1918a1i 11 . . 3 (𝐺 ∈ Abel → 1 = (1r‘ℤring))
20 zringring 21359 . . . 4 ring ∈ Ring
2120a1i 11 . . 3 (𝐺 ∈ Abel → ℤring ∈ Ring)
223, 6ablprop 19723 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel)
23 ablgrp 19715 . . . 4 (𝑊 ∈ Abel → 𝑊 ∈ Grp)
2422, 23sylbi 217 . . 3 (𝐺 ∈ Abel → 𝑊 ∈ Grp)
25 ablgrp 19715 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
262, 9mulgcl 19023 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
2725, 26syl3an1 1163 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
282, 9, 5mulgdi 19756 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.g𝐺)𝑦)(+g𝐺)(𝑥(.g𝐺)𝑧)))
292, 9, 5mulgdir 19038 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
3025, 29sylan 580 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
312, 9mulgass 19043 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
3225, 31sylan 580 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
332, 9mulg1 19013 . . . 4 (𝑥 ∈ (Base‘𝐺) → (1(.g𝐺)𝑥) = 𝑥)
3433adantl 481 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g𝐺)𝑥) = 𝑥)
354, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34islmodd 20772 . 2 (𝐺 ∈ Abel → 𝑊 ∈ LMod)
36 lmodabl 20815 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3736, 22sylibr 234 . 2 (𝑊 ∈ LMod → 𝐺 ∈ Abel)
3835, 37impbii 209 1 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071   · cmul 11073  cz 12529  Basecbs 17179  +gcplusg 17220  .rcmulr 17221   ·𝑠 cvsca 17224  Grpcgrp 18865  .gcmg 18999  Abelcabl 19711  1rcur 20090  Ringcrg 20142  LModclmod 20766  ringczring 21356  ℤModczlm 21410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-cnfld 21265  df-zring 21357  df-zlm 21414
This theorem is referenced by:  zlmassa  21812  zlmclm  25012  nmmulg  33956  cnzh  33958  rezh  33959
  Copyright terms: Public domain W3C validator