![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version |
Description: The β€-module operation turns an arbitrary abelian group into a left module over β€. Also see zlmassa 21456. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
zlmlmod.w | β’ π = (β€ModβπΊ) |
Ref | Expression |
---|---|
zlmlmod | β’ (πΊ β Abel β π β LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlmod.w | . . . . 5 β’ π = (β€ModβπΊ) | |
2 | eqid 2733 | . . . . 5 β’ (BaseβπΊ) = (BaseβπΊ) | |
3 | 1, 2 | zlmbas 21068 | . . . 4 β’ (BaseβπΊ) = (Baseβπ) |
4 | 3 | a1i 11 | . . 3 β’ (πΊ β Abel β (BaseβπΊ) = (Baseβπ)) |
5 | eqid 2733 | . . . . 5 β’ (+gβπΊ) = (+gβπΊ) | |
6 | 1, 5 | zlmplusg 21070 | . . . 4 β’ (+gβπΊ) = (+gβπ) |
7 | 6 | a1i 11 | . . 3 β’ (πΊ β Abel β (+gβπΊ) = (+gβπ)) |
8 | 1 | zlmsca 21074 | . . 3 β’ (πΊ β Abel β β€ring = (Scalarβπ)) |
9 | eqid 2733 | . . . . 5 β’ (.gβπΊ) = (.gβπΊ) | |
10 | 1, 9 | zlmvsca 21075 | . . . 4 β’ (.gβπΊ) = ( Β·π βπ) |
11 | 10 | a1i 11 | . . 3 β’ (πΊ β Abel β (.gβπΊ) = ( Β·π βπ)) |
12 | zringbas 21023 | . . . 4 β’ β€ = (Baseββ€ring) | |
13 | 12 | a1i 11 | . . 3 β’ (πΊ β Abel β β€ = (Baseββ€ring)) |
14 | zringplusg 21024 | . . . 4 β’ + = (+gββ€ring) | |
15 | 14 | a1i 11 | . . 3 β’ (πΊ β Abel β + = (+gββ€ring)) |
16 | zringmulr 21027 | . . . 4 β’ Β· = (.rββ€ring) | |
17 | 16 | a1i 11 | . . 3 β’ (πΊ β Abel β Β· = (.rββ€ring)) |
18 | zring1 21029 | . . . 4 β’ 1 = (1rββ€ring) | |
19 | 18 | a1i 11 | . . 3 β’ (πΊ β Abel β 1 = (1rββ€ring)) |
20 | zringring 21020 | . . . 4 β’ β€ring β Ring | |
21 | 20 | a1i 11 | . . 3 β’ (πΊ β Abel β β€ring β Ring) |
22 | 3, 6 | ablprop 19661 | . . . 4 β’ (πΊ β Abel β π β Abel) |
23 | ablgrp 19653 | . . . 4 β’ (π β Abel β π β Grp) | |
24 | 22, 23 | sylbi 216 | . . 3 β’ (πΊ β Abel β π β Grp) |
25 | ablgrp 19653 | . . . 4 β’ (πΊ β Abel β πΊ β Grp) | |
26 | 2, 9 | mulgcl 18971 | . . . 4 β’ ((πΊ β Grp β§ π₯ β β€ β§ π¦ β (BaseβπΊ)) β (π₯(.gβπΊ)π¦) β (BaseβπΊ)) |
27 | 25, 26 | syl3an1 1164 | . . 3 β’ ((πΊ β Abel β§ π₯ β β€ β§ π¦ β (BaseβπΊ)) β (π₯(.gβπΊ)π¦) β (BaseβπΊ)) |
28 | 2, 9, 5 | mulgdi 19694 | . . 3 β’ ((πΊ β Abel β§ (π₯ β β€ β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π₯(.gβπΊ)(π¦(+gβπΊ)π§)) = ((π₯(.gβπΊ)π¦)(+gβπΊ)(π₯(.gβπΊ)π§))) |
29 | 2, 9, 5 | mulgdir 18986 | . . . 4 β’ ((πΊ β Grp β§ (π₯ β β€ β§ π¦ β β€ β§ π§ β (BaseβπΊ))) β ((π₯ + π¦)(.gβπΊ)π§) = ((π₯(.gβπΊ)π§)(+gβπΊ)(π¦(.gβπΊ)π§))) |
30 | 25, 29 | sylan 581 | . . 3 β’ ((πΊ β Abel β§ (π₯ β β€ β§ π¦ β β€ β§ π§ β (BaseβπΊ))) β ((π₯ + π¦)(.gβπΊ)π§) = ((π₯(.gβπΊ)π§)(+gβπΊ)(π¦(.gβπΊ)π§))) |
31 | 2, 9 | mulgass 18991 | . . . 4 β’ ((πΊ β Grp β§ (π₯ β β€ β§ π¦ β β€ β§ π§ β (BaseβπΊ))) β ((π₯ Β· π¦)(.gβπΊ)π§) = (π₯(.gβπΊ)(π¦(.gβπΊ)π§))) |
32 | 25, 31 | sylan 581 | . . 3 β’ ((πΊ β Abel β§ (π₯ β β€ β§ π¦ β β€ β§ π§ β (BaseβπΊ))) β ((π₯ Β· π¦)(.gβπΊ)π§) = (π₯(.gβπΊ)(π¦(.gβπΊ)π§))) |
33 | 2, 9 | mulg1 18961 | . . . 4 β’ (π₯ β (BaseβπΊ) β (1(.gβπΊ)π₯) = π₯) |
34 | 33 | adantl 483 | . . 3 β’ ((πΊ β Abel β§ π₯ β (BaseβπΊ)) β (1(.gβπΊ)π₯) = π₯) |
35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 20477 | . 2 β’ (πΊ β Abel β π β LMod) |
36 | lmodabl 20519 | . . 3 β’ (π β LMod β π β Abel) | |
37 | 36, 22 | sylibr 233 | . 2 β’ (π β LMod β πΊ β Abel) |
38 | 35, 37 | impbii 208 | 1 β’ (πΊ β Abel β π β LMod) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 1c1 11111 + caddc 11113 Β· cmul 11115 β€cz 12558 Basecbs 17144 +gcplusg 17197 .rcmulr 17198 Β·π cvsca 17201 Grpcgrp 18819 .gcmg 18950 Abelcabl 19649 1rcur 20004 Ringcrg 20056 LModclmod 20471 β€ringczring 21017 β€Modczlm 21050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-mulg 18951 df-subg 19003 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-subrg 20317 df-lmod 20473 df-cnfld 20945 df-zring 21018 df-zlm 21054 |
This theorem is referenced by: zlmassa 21456 zlmclm 24628 nmmulg 32948 cnzh 32950 rezh 32951 |
Copyright terms: Public domain | W3C validator |