![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version |
Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
zlmlmod.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zlmlmod | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmlmod.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
2 | eqid 2797 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 1, 2 | zlmbas 20185 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊)) |
5 | eqid 2797 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
6 | 1, 5 | zlmplusg 20186 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝑊) |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (+g‘𝐺) = (+g‘𝑊)) |
8 | 1 | zlmsca 20188 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
9 | eqid 2797 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
10 | 1, 9 | zlmvsca 20189 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
12 | zringbas 20143 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ = (Base‘ℤring)) |
14 | zringplusg 20144 | . . . 4 ⊢ + = (+g‘ℤring) | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → + = (+g‘ℤring)) |
16 | zringmulr 20146 | . . . 4 ⊢ · = (.r‘ℤring) | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → · = (.r‘ℤring)) |
18 | zring1 20148 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → 1 = (1r‘ℤring)) |
20 | zringring 20140 | . . . 4 ⊢ ℤring ∈ Ring | |
21 | 20 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring ∈ Ring) |
22 | 3, 6 | ablprop 18516 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel) |
23 | ablgrp 18510 | . . . 4 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ Grp) | |
24 | 22, 23 | sylbi 209 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ Grp) |
25 | ablgrp 18510 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
26 | 2, 9 | mulgcl 17871 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
27 | 25, 26 | syl3an1 1203 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
28 | 2, 9, 5 | mulgdi 18544 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.g‘𝐺)𝑦)(+g‘𝐺)(𝑥(.g‘𝐺)𝑧))) |
29 | 2, 9, 5 | mulgdir 17884 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
30 | 25, 29 | sylan 576 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
31 | 2, 9 | mulgass 17889 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
32 | 25, 31 | sylan 576 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
33 | 2, 9 | mulg1 17861 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺) → (1(.g‘𝐺)𝑥) = 𝑥) |
34 | 33 | adantl 474 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g‘𝐺)𝑥) = 𝑥) |
35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 19184 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
36 | lmodabl 19225 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
37 | 36, 22 | sylibr 226 | . 2 ⊢ (𝑊 ∈ LMod → 𝐺 ∈ Abel) |
38 | 35, 37 | impbii 201 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 1c1 10223 + caddc 10225 · cmul 10227 ℤcz 11662 Basecbs 16181 +gcplusg 16264 .rcmulr 16265 ·𝑠 cvsca 16268 Grpcgrp 17735 .gcmg 17853 Abelcabl 18506 1rcur 18814 Ringcrg 18860 LModclmod 19178 ℤringzring 20137 ℤModczlm 20168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-sca 16280 df-vsca 16281 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-mulg 17854 df-subg 17901 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-cring 18863 df-subrg 19093 df-lmod 19180 df-cnfld 20066 df-zring 20138 df-zlm 20172 |
This theorem is referenced by: zlmassa 20191 zlmclm 23236 nmmulg 30520 cnzh 30522 rezh 30523 |
Copyright terms: Public domain | W3C validator |