| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version | ||
| Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. Also see zlmassa 21828. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmlmod.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmlmod | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlmod.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 1, 2 | zlmbas 21442 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊)) |
| 5 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | zlmplusg 21443 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (+g‘𝐺) = (+g‘𝑊)) |
| 8 | 1 | zlmsca 21445 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
| 9 | eqid 2729 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 10 | 1, 9 | zlmvsca 21446 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
| 12 | zringbas 21378 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ = (Base‘ℤring)) |
| 14 | zringplusg 21379 | . . . 4 ⊢ + = (+g‘ℤring) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → + = (+g‘ℤring)) |
| 16 | zringmulr 21382 | . . . 4 ⊢ · = (.r‘ℤring) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → · = (.r‘ℤring)) |
| 18 | zring1 21384 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → 1 = (1r‘ℤring)) |
| 20 | zringring 21374 | . . . 4 ⊢ ℤring ∈ Ring | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring ∈ Ring) |
| 22 | 3, 6 | ablprop 19690 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel) |
| 23 | ablgrp 19682 | . . . 4 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ Grp) | |
| 24 | 22, 23 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ Grp) |
| 25 | ablgrp 19682 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 26 | 2, 9 | mulgcl 18988 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 27 | 25, 26 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 28 | 2, 9, 5 | mulgdi 19723 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.g‘𝐺)𝑦)(+g‘𝐺)(𝑥(.g‘𝐺)𝑧))) |
| 29 | 2, 9, 5 | mulgdir 19003 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 30 | 25, 29 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 31 | 2, 9 | mulgass 19008 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 32 | 25, 31 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 33 | 2, 9 | mulg1 18978 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 34 | 33 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 20787 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
| 36 | lmodabl 20830 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 37 | 36, 22 | sylibr 234 | . 2 ⊢ (𝑊 ∈ LMod → 𝐺 ∈ Abel) |
| 38 | 35, 37 | impbii 209 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 1c1 11029 + caddc 11031 · cmul 11033 ℤcz 12489 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 ·𝑠 cvsca 17183 Grpcgrp 18830 .gcmg 18964 Abelcabl 19678 1rcur 20084 Ringcrg 20136 LModclmod 20781 ℤringczring 21371 ℤModczlm 21425 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-cnfld 21280 df-zring 21372 df-zlm 21429 |
| This theorem is referenced by: zlmassa 21828 zlmclm 25028 nmmulg 33935 cnzh 33937 rezh 33938 |
| Copyright terms: Public domain | W3C validator |