| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version | ||
| Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. Also see zlmassa 21850. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmlmod.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmlmod | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlmod.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 1, 2 | zlmbas 21463 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊)) |
| 5 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | zlmplusg 21464 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (+g‘𝐺) = (+g‘𝑊)) |
| 8 | 1 | zlmsca 21466 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
| 9 | eqid 2733 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 10 | 1, 9 | zlmvsca 21467 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
| 12 | zringbas 21399 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ = (Base‘ℤring)) |
| 14 | zringplusg 21400 | . . . 4 ⊢ + = (+g‘ℤring) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → + = (+g‘ℤring)) |
| 16 | zringmulr 21403 | . . . 4 ⊢ · = (.r‘ℤring) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → · = (.r‘ℤring)) |
| 18 | zring1 21405 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → 1 = (1r‘ℤring)) |
| 20 | zringring 21395 | . . . 4 ⊢ ℤring ∈ Ring | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring ∈ Ring) |
| 22 | 3, 6 | ablprop 19713 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel) |
| 23 | ablgrp 19705 | . . . 4 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ Grp) | |
| 24 | 22, 23 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ Grp) |
| 25 | ablgrp 19705 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 26 | 2, 9 | mulgcl 19012 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 27 | 25, 26 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 28 | 2, 9, 5 | mulgdi 19746 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.g‘𝐺)𝑦)(+g‘𝐺)(𝑥(.g‘𝐺)𝑧))) |
| 29 | 2, 9, 5 | mulgdir 19027 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 30 | 25, 29 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 31 | 2, 9 | mulgass 19032 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 32 | 25, 31 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 33 | 2, 9 | mulg1 19002 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 34 | 33 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 20808 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
| 36 | lmodabl 20851 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 37 | 36, 22 | sylibr 234 | . 2 ⊢ (𝑊 ∈ LMod → 𝐺 ∈ Abel) |
| 38 | 35, 37 | impbii 209 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 1c1 11018 + caddc 11020 · cmul 11022 ℤcz 12479 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 ·𝑠 cvsca 17172 Grpcgrp 18854 .gcmg 18988 Abelcabl 19701 1rcur 20107 Ringcrg 20159 LModclmod 20802 ℤringczring 21392 ℤModczlm 21446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-mulg 18989 df-subg 19044 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-cnfld 21301 df-zring 21393 df-zlm 21450 |
| This theorem is referenced by: zlmassa 21850 zlmclm 25059 nmmulg 34051 cnzh 34053 rezh 34054 |
| Copyright terms: Public domain | W3C validator |