| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version | ||
| Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. Also see zlmassa 21835. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmlmod.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmlmod | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlmod.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 1, 2 | zlmbas 21449 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊)) |
| 5 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | zlmplusg 21450 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (+g‘𝐺) = (+g‘𝑊)) |
| 8 | 1 | zlmsca 21452 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
| 9 | eqid 2731 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 10 | 1, 9 | zlmvsca 21453 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
| 12 | zringbas 21385 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ = (Base‘ℤring)) |
| 14 | zringplusg 21386 | . . . 4 ⊢ + = (+g‘ℤring) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → + = (+g‘ℤring)) |
| 16 | zringmulr 21389 | . . . 4 ⊢ · = (.r‘ℤring) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → · = (.r‘ℤring)) |
| 18 | zring1 21391 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → 1 = (1r‘ℤring)) |
| 20 | zringring 21381 | . . . 4 ⊢ ℤring ∈ Ring | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring ∈ Ring) |
| 22 | 3, 6 | ablprop 19700 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel) |
| 23 | ablgrp 19692 | . . . 4 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ Grp) | |
| 24 | 22, 23 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ Grp) |
| 25 | ablgrp 19692 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 26 | 2, 9 | mulgcl 18999 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 27 | 25, 26 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 28 | 2, 9, 5 | mulgdi 19733 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.g‘𝐺)𝑦)(+g‘𝐺)(𝑥(.g‘𝐺)𝑧))) |
| 29 | 2, 9, 5 | mulgdir 19014 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 30 | 25, 29 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 31 | 2, 9 | mulgass 19019 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 32 | 25, 31 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 33 | 2, 9 | mulg1 18989 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 34 | 33 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 20794 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
| 36 | lmodabl 20837 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 37 | 36, 22 | sylibr 234 | . 2 ⊢ (𝑊 ∈ LMod → 𝐺 ∈ Abel) |
| 38 | 35, 37 | impbii 209 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 1c1 11002 + caddc 11004 · cmul 11006 ℤcz 12463 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 ·𝑠 cvsca 17160 Grpcgrp 18841 .gcmg 18975 Abelcabl 19688 1rcur 20094 Ringcrg 20146 LModclmod 20788 ℤringczring 21378 ℤModczlm 21432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-cnfld 21287 df-zring 21379 df-zlm 21436 |
| This theorem is referenced by: zlmassa 21835 zlmclm 25034 nmmulg 33971 cnzh 33973 rezh 33974 |
| Copyright terms: Public domain | W3C validator |