| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmlmod | Structured version Visualization version GIF version | ||
| Description: The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. Also see zlmassa 21863. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmlmod.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmlmod | ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlmod.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 1, 2 | zlmbas 21478 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊)) |
| 5 | eqid 2735 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 1, 5 | zlmplusg 21479 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (+g‘𝐺) = (+g‘𝑊)) |
| 8 | 1 | zlmsca 21481 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊)) |
| 9 | eqid 2735 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 10 | 1, 9 | zlmvsca 21482 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
| 12 | zringbas 21414 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤ = (Base‘ℤring)) |
| 14 | zringplusg 21415 | . . . 4 ⊢ + = (+g‘ℤring) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → + = (+g‘ℤring)) |
| 16 | zringmulr 21418 | . . . 4 ⊢ · = (.r‘ℤring) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → · = (.r‘ℤring)) |
| 18 | zring1 21420 | . . . 4 ⊢ 1 = (1r‘ℤring) | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → 1 = (1r‘ℤring)) |
| 20 | zringring 21410 | . . . 4 ⊢ ℤring ∈ Ring | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Abel → ℤring ∈ Ring) |
| 22 | 3, 6 | ablprop 19774 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel) |
| 23 | ablgrp 19766 | . . . 4 ⊢ (𝑊 ∈ Abel → 𝑊 ∈ Grp) | |
| 24 | 22, 23 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ Grp) |
| 25 | ablgrp 19766 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 26 | 2, 9 | mulgcl 19074 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 27 | 25, 26 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 28 | 2, 9, 5 | mulgdi 19807 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.g‘𝐺)𝑦)(+g‘𝐺)(𝑥(.g‘𝐺)𝑧))) |
| 29 | 2, 9, 5 | mulgdir 19089 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 30 | 25, 29 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g‘𝐺)𝑧) = ((𝑥(.g‘𝐺)𝑧)(+g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 31 | 2, 9 | mulgass 19094 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 32 | 25, 31 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.g‘𝐺)𝑧))) |
| 33 | 2, 9 | mulg1 19064 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 34 | 33 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g‘𝐺)𝑥) = 𝑥) |
| 35 | 4, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34 | islmodd 20823 | . 2 ⊢ (𝐺 ∈ Abel → 𝑊 ∈ LMod) |
| 36 | lmodabl 20866 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 37 | 36, 22 | sylibr 234 | . 2 ⊢ (𝑊 ∈ LMod → 𝐺 ∈ Abel) |
| 38 | 35, 37 | impbii 209 | 1 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 · cmul 11134 ℤcz 12588 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 ·𝑠 cvsca 17275 Grpcgrp 18916 .gcmg 19050 Abelcabl 19762 1rcur 20141 Ringcrg 20193 LModclmod 20817 ℤringczring 21407 ℤModczlm 21461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-mulg 19051 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-cnfld 21316 df-zring 21408 df-zlm 21465 |
| This theorem is referenced by: zlmassa 21863 zlmclm 25063 nmmulg 33997 cnzh 33999 rezh 34000 |
| Copyright terms: Public domain | W3C validator |