MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmlmod Structured version   Visualization version   GIF version

Theorem zlmlmod 21452
Description: The -module operation turns an arbitrary abelian group into a left module over . Also see zlmassa 21836. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmlmod.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmlmod (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)

Proof of Theorem zlmlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmlmod.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2728 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 21444 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Abel → (Base‘𝐺) = (Base‘𝑊))
5 eqid 2728 . . . . 5 (+g𝐺) = (+g𝐺)
61, 5zlmplusg 21446 . . . 4 (+g𝐺) = (+g𝑊)
76a1i 11 . . 3 (𝐺 ∈ Abel → (+g𝐺) = (+g𝑊))
81zlmsca 21450 . . 3 (𝐺 ∈ Abel → ℤring = (Scalar‘𝑊))
9 eqid 2728 . . . . 5 (.g𝐺) = (.g𝐺)
101, 9zlmvsca 21451 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
1110a1i 11 . . 3 (𝐺 ∈ Abel → (.g𝐺) = ( ·𝑠𝑊))
12 zringbas 21379 . . . 4 ℤ = (Base‘ℤring)
1312a1i 11 . . 3 (𝐺 ∈ Abel → ℤ = (Base‘ℤring))
14 zringplusg 21380 . . . 4 + = (+g‘ℤring)
1514a1i 11 . . 3 (𝐺 ∈ Abel → + = (+g‘ℤring))
16 zringmulr 21383 . . . 4 · = (.r‘ℤring)
1716a1i 11 . . 3 (𝐺 ∈ Abel → · = (.r‘ℤring))
18 zring1 21385 . . . 4 1 = (1r‘ℤring)
1918a1i 11 . . 3 (𝐺 ∈ Abel → 1 = (1r‘ℤring))
20 zringring 21375 . . . 4 ring ∈ Ring
2120a1i 11 . . 3 (𝐺 ∈ Abel → ℤring ∈ Ring)
223, 6ablprop 19748 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ Abel)
23 ablgrp 19740 . . . 4 (𝑊 ∈ Abel → 𝑊 ∈ Grp)
2422, 23sylbi 216 . . 3 (𝐺 ∈ Abel → 𝑊 ∈ Grp)
25 ablgrp 19740 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
262, 9mulgcl 19046 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
2725, 26syl3an1 1161 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(.g𝐺)𝑦) ∈ (Base‘𝐺))
282, 9, 5mulgdi 19781 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.g𝐺)𝑦)(+g𝐺)(𝑥(.g𝐺)𝑧)))
292, 9, 5mulgdir 19061 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
3025, 29sylan 579 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 + 𝑦)(.g𝐺)𝑧) = ((𝑥(.g𝐺)𝑧)(+g𝐺)(𝑦(.g𝐺)𝑧)))
312, 9mulgass 19066 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
3225, 31sylan 579 . . 3 ((𝐺 ∈ Abel ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 · 𝑦)(.g𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.g𝐺)𝑧)))
332, 9mulg1 19036 . . . 4 (𝑥 ∈ (Base‘𝐺) → (1(.g𝐺)𝑥) = 𝑥)
3433adantl 481 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺)) → (1(.g𝐺)𝑥) = 𝑥)
354, 7, 8, 11, 13, 15, 17, 19, 21, 24, 27, 28, 30, 32, 34islmodd 20749 . 2 (𝐺 ∈ Abel → 𝑊 ∈ LMod)
36 lmodabl 20792 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3736, 22sylibr 233 . 2 (𝑊 ∈ LMod → 𝐺 ∈ Abel)
3835, 37impbii 208 1 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  1c1 11140   + caddc 11142   · cmul 11144  cz 12589  Basecbs 17180  +gcplusg 17233  .rcmulr 17234   ·𝑠 cvsca 17237  Grpcgrp 18890  .gcmg 19023  Abelcabl 19736  1rcur 20121  Ringcrg 20173  LModclmod 20743  ringczring 21372  ℤModczlm 21426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-addf 11218  ax-mulf 11219
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-fzo 13661  df-seq 14000  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-mulg 19024  df-subg 19078  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-cring 20176  df-subrng 20483  df-subrg 20508  df-lmod 20745  df-cnfld 21280  df-zring 21373  df-zlm 21430
This theorem is referenced by:  zlmassa  21836  zlmclm  25052  nmmulg  33569  cnzh  33571  rezh  33572
  Copyright terms: Public domain W3C validator