MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Structured version   Visualization version   GIF version

Theorem scott0s 9577
Description: Theorem scheme version of scott0 9575. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is not empty iff there is an 𝑥 such that 𝜑(𝑥) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scott0s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abn0 4311 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 scott0 9575 . . . 4 ({𝑥𝜑} = ∅ ↔ {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
3 nfcv 2906 . . . . . . 7 𝑧{𝑥𝜑}
4 nfab1 2908 . . . . . . 7 𝑥{𝑥𝜑}
5 nfv 1918 . . . . . . . 8 𝑥(rank‘𝑧) ⊆ (rank‘𝑦)
64, 5nfralw 3149 . . . . . . 7 𝑥𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)
7 nfv 1918 . . . . . . 7 𝑧𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)
8 fveq2 6756 . . . . . . . . 9 (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥))
98sseq1d 3948 . . . . . . . 8 (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
109ralbidv 3120 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)))
113, 4, 6, 7, 10cbvrabw 3414 . . . . . 6 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)}
12 df-rab 3072 . . . . . 6 {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))}
13 abid 2719 . . . . . . . 8 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
14 df-ral 3068 . . . . . . . . 9 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
15 df-sbc 3712 . . . . . . . . . . 11 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
1615imbi1i 349 . . . . . . . . . 10 (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1716albii 1823 . . . . . . . . 9 (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1814, 17bitr4i 277 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1913, 18anbi12i 626 . . . . . . 7 ((𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))))
2019abbii 2809 . . . . . 6 {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2111, 12, 203eqtri 2770 . . . . 5 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2221eqeq1i 2743 . . . 4 ({𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
232, 22bitri 274 . . 3 ({𝑥𝜑} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
2423necon3bii 2995 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
251, 24bitr3i 276 1 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  {crab 3067  [wsbc 3711  wss 3883  c0 4253  cfv 6418  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  hta  9586
  Copyright terms: Public domain W3C validator