MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Structured version   Visualization version   GIF version

Theorem scott0s 9911
Description: Theorem scheme version of scott0 9909. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is not empty iff there is an 𝑥 such that 𝜑(𝑥) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scott0s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abn0 4367 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 scott0 9909 . . . 4 ({𝑥𝜑} = ∅ ↔ {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
3 nfcv 2897 . . . . . . 7 𝑧{𝑥𝜑}
4 nfab1 2899 . . . . . . 7 𝑥{𝑥𝜑}
5 nfv 1913 . . . . . . . 8 𝑥(rank‘𝑧) ⊆ (rank‘𝑦)
64, 5nfralw 3295 . . . . . . 7 𝑥𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)
7 nfv 1913 . . . . . . 7 𝑧𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)
8 fveq2 6887 . . . . . . . . 9 (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥))
98sseq1d 3997 . . . . . . . 8 (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
109ralbidv 3165 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)))
113, 4, 6, 7, 10cbvrabw 3457 . . . . . 6 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)}
12 df-rab 3421 . . . . . 6 {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))}
13 abid 2716 . . . . . . . 8 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
14 df-ral 3051 . . . . . . . . 9 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
15 df-sbc 3773 . . . . . . . . . . 11 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
1615imbi1i 349 . . . . . . . . . 10 (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1716albii 1818 . . . . . . . . 9 (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1814, 17bitr4i 278 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1913, 18anbi12i 628 . . . . . . 7 ((𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))))
2019abbii 2801 . . . . . 6 {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2111, 12, 203eqtri 2761 . . . . 5 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2221eqeq1i 2739 . . . 4 ({𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
232, 22bitri 275 . . 3 ({𝑥𝜑} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
2423necon3bii 2983 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
251, 24bitr3i 277 1 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wne 2931  wral 3050  {crab 3420  [wsbc 3772  wss 3933  c0 4315  cfv 6542  rankcrnk 9786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-r1 9787  df-rank 9788
This theorem is referenced by:  hta  9920
  Copyright terms: Public domain W3C validator