MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Structured version   Visualization version   GIF version

Theorem scott0s 9932
Description: Theorem scheme version of scott0 9930. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is not empty iff there is an 𝑥 such that 𝜑(𝑥) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scott0s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abn0 4392 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 scott0 9930 . . . 4 ({𝑥𝜑} = ∅ ↔ {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
3 nfcv 2904 . . . . . . 7 𝑧{𝑥𝜑}
4 nfab1 2906 . . . . . . 7 𝑥{𝑥𝜑}
5 nfv 1913 . . . . . . . 8 𝑥(rank‘𝑧) ⊆ (rank‘𝑦)
64, 5nfralw 3310 . . . . . . 7 𝑥𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)
7 nfv 1913 . . . . . . 7 𝑧𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)
8 fveq2 6911 . . . . . . . . 9 (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥))
98sseq1d 4028 . . . . . . . 8 (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
109ralbidv 3177 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)))
113, 4, 6, 7, 10cbvrabw 3472 . . . . . 6 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)}
12 df-rab 3435 . . . . . 6 {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))}
13 abid 2717 . . . . . . . 8 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
14 df-ral 3061 . . . . . . . . 9 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
15 df-sbc 3793 . . . . . . . . . . 11 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
1615imbi1i 349 . . . . . . . . . 10 (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1716albii 1817 . . . . . . . . 9 (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1814, 17bitr4i 278 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1913, 18anbi12i 628 . . . . . . 7 ((𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))))
2019abbii 2808 . . . . . 6 {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2111, 12, 203eqtri 2768 . . . . 5 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2221eqeq1i 2741 . . . 4 ({𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
232, 22bitri 275 . . 3 ({𝑥𝜑} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
2423necon3bii 2992 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
251, 24bitr3i 277 1 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1536   = wceq 1538  wex 1777  wcel 2107  {cab 2713  wne 2939  wral 3060  {crab 3434  [wsbc 3792  wss 3964  c0 4340  cfv 6566  rankcrnk 9807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-ov 7438  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-r1 9808  df-rank 9809
This theorem is referenced by:  hta  9941
  Copyright terms: Public domain W3C validator