Step | Hyp | Ref
| Expression |
1 | | abn0 4380 |
. 2
β’ ({π₯ β£ π} β β
β βπ₯π) |
2 | | scott0 9883 |
. . . 4
β’ ({π₯ β£ π} = β
β {π§ β {π₯ β£ π} β£ βπ¦ β {π₯ β£ π} (rankβπ§) β (rankβπ¦)} = β
) |
3 | | nfcv 2903 |
. . . . . . 7
β’
β²π§{π₯ β£ π} |
4 | | nfab1 2905 |
. . . . . . 7
β’
β²π₯{π₯ β£ π} |
5 | | nfv 1917 |
. . . . . . . 8
β’
β²π₯(rankβπ§) β (rankβπ¦) |
6 | 4, 5 | nfralw 3308 |
. . . . . . 7
β’
β²π₯βπ¦ β {π₯ β£ π} (rankβπ§) β (rankβπ¦) |
7 | | nfv 1917 |
. . . . . . 7
β’
β²π§βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦) |
8 | | fveq2 6891 |
. . . . . . . . 9
β’ (π§ = π₯ β (rankβπ§) = (rankβπ₯)) |
9 | 8 | sseq1d 4013 |
. . . . . . . 8
β’ (π§ = π₯ β ((rankβπ§) β (rankβπ¦) β (rankβπ₯) β (rankβπ¦))) |
10 | 9 | ralbidv 3177 |
. . . . . . 7
β’ (π§ = π₯ β (βπ¦ β {π₯ β£ π} (rankβπ§) β (rankβπ¦) β βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦))) |
11 | 3, 4, 6, 7, 10 | cbvrabw 3467 |
. . . . . 6
β’ {π§ β {π₯ β£ π} β£ βπ¦ β {π₯ β£ π} (rankβπ§) β (rankβπ¦)} = {π₯ β {π₯ β£ π} β£ βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦)} |
12 | | df-rab 3433 |
. . . . . 6
β’ {π₯ β {π₯ β£ π} β£ βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦)} = {π₯ β£ (π₯ β {π₯ β£ π} β§ βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦))} |
13 | | abid 2713 |
. . . . . . . 8
β’ (π₯ β {π₯ β£ π} β π) |
14 | | df-ral 3062 |
. . . . . . . . 9
β’
(βπ¦ β
{π₯ β£ π} (rankβπ₯) β (rankβπ¦) β βπ¦(π¦ β {π₯ β£ π} β (rankβπ₯) β (rankβπ¦))) |
15 | | df-sbc 3778 |
. . . . . . . . . . 11
β’
([π¦ / π₯]π β π¦ β {π₯ β£ π}) |
16 | 15 | imbi1i 349 |
. . . . . . . . . 10
β’
(([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)) β (π¦ β {π₯ β£ π} β (rankβπ₯) β (rankβπ¦))) |
17 | 16 | albii 1821 |
. . . . . . . . 9
β’
(βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)) β βπ¦(π¦ β {π₯ β£ π} β (rankβπ₯) β (rankβπ¦))) |
18 | 14, 17 | bitr4i 277 |
. . . . . . . 8
β’
(βπ¦ β
{π₯ β£ π} (rankβπ₯) β (rankβπ¦) β βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦))) |
19 | 13, 18 | anbi12i 627 |
. . . . . . 7
β’ ((π₯ β {π₯ β£ π} β§ βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦)) β (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))) |
20 | 19 | abbii 2802 |
. . . . . 6
β’ {π₯ β£ (π₯ β {π₯ β£ π} β§ βπ¦ β {π₯ β£ π} (rankβπ₯) β (rankβπ¦))} = {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} |
21 | 11, 12, 20 | 3eqtri 2764 |
. . . . 5
β’ {π§ β {π₯ β£ π} β£ βπ¦ β {π₯ β£ π} (rankβπ§) β (rankβπ¦)} = {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} |
22 | 21 | eqeq1i 2737 |
. . . 4
β’ ({π§ β {π₯ β£ π} β£ βπ¦ β {π₯ β£ π} (rankβπ§) β (rankβπ¦)} = β
β {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} = β
) |
23 | 2, 22 | bitri 274 |
. . 3
β’ ({π₯ β£ π} = β
β {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} = β
) |
24 | 23 | necon3bii 2993 |
. 2
β’ ({π₯ β£ π} β β
β {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} β β
) |
25 | 1, 24 | bitr3i 276 |
1
β’
(βπ₯π β {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} β β
) |