MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmul Structured version   Visualization version   GIF version

Theorem supmul 12162
Description: The supremum function distributes over multiplication, in the sense that (sup𝐴) · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝑎 · 𝑏𝑎𝐴, 𝑏𝐵} and is defined as 𝐶 below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp 10944). (Contributed by Mario Carneiro, 5-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmul (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑏,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmul
Dummy variables 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supmul.2 . . . . . . 7 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
21simp2bi 1146 . . . . . 6 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
3 suprcl 12150 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
42, 3syl 17 . . . . 5 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
51simp3bi 1147 . . . . . 6 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
6 suprcl 12150 . . . . . 6 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
75, 6syl 17 . . . . 5 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
8 recn 11165 . . . . . 6 (sup(𝐴, ℝ, < ) ∈ ℝ → sup(𝐴, ℝ, < ) ∈ ℂ)
9 recn 11165 . . . . . 6 (sup(𝐵, ℝ, < ) ∈ ℝ → sup(𝐵, ℝ, < ) ∈ ℂ)
10 mulcom 11161 . . . . . 6 ((sup(𝐴, ℝ, < ) ∈ ℂ ∧ sup(𝐵, ℝ, < ) ∈ ℂ) → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = (sup(𝐵, ℝ, < ) · sup(𝐴, ℝ, < )))
118, 9, 10syl2an 596 . . . . 5 ((sup(𝐴, ℝ, < ) ∈ ℝ ∧ sup(𝐵, ℝ, < ) ∈ ℝ) → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = (sup(𝐵, ℝ, < ) · sup(𝐴, ℝ, < )))
124, 7, 11syl2anc 584 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = (sup(𝐵, ℝ, < ) · sup(𝐴, ℝ, < )))
135simp2d 1143 . . . . . . 7 (𝜑𝐵 ≠ ∅)
14 n0 4319 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
1513, 14sylib 218 . . . . . 6 (𝜑 → ∃𝑏 𝑏𝐵)
16 0red 11184 . . . . . . 7 ((𝜑𝑏𝐵) → 0 ∈ ℝ)
175simp1d 1142 . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
1817sselda 3949 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
197adantr 480 . . . . . . 7 ((𝜑𝑏𝐵) → sup(𝐵, ℝ, < ) ∈ ℝ)
20 simp1r 1199 . . . . . . . . . 10 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
211, 20sylbi 217 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
22 breq2 5114 . . . . . . . . . 10 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
2322rspccv 3588 . . . . . . . . 9 (∀𝑥𝐵 0 ≤ 𝑥 → (𝑏𝐵 → 0 ≤ 𝑏))
2421, 23syl 17 . . . . . . . 8 (𝜑 → (𝑏𝐵 → 0 ≤ 𝑏))
2524imp 406 . . . . . . 7 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
26 suprub 12151 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
275, 26sylan 580 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
2816, 18, 19, 25, 27letrd 11338 . . . . . 6 ((𝜑𝑏𝐵) → 0 ≤ sup(𝐵, ℝ, < ))
2915, 28exlimddv 1935 . . . . 5 (𝜑 → 0 ≤ sup(𝐵, ℝ, < ))
30 simp1l 1198 . . . . . 6 (((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐴 0 ≤ 𝑥)
311, 30sylbi 217 . . . . 5 (𝜑 → ∀𝑥𝐴 0 ≤ 𝑥)
32 eqid 2730 . . . . . 6 {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} = {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}
33 biid 261 . . . . . 6 (((sup(𝐵, ℝ, < ) ∈ ℝ ∧ 0 ≤ sup(𝐵, ℝ, < ) ∧ ∀𝑥𝐴 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)) ↔ ((sup(𝐵, ℝ, < ) ∈ ℝ ∧ 0 ≤ sup(𝐵, ℝ, < ) ∧ ∀𝑥𝐴 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)))
3432, 33supmul1 12159 . . . . 5 (((sup(𝐵, ℝ, < ) ∈ ℝ ∧ 0 ≤ sup(𝐵, ℝ, < ) ∧ ∀𝑥𝐴 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)) → (sup(𝐵, ℝ, < ) · sup(𝐴, ℝ, < )) = sup({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}, ℝ, < ))
357, 29, 31, 2, 34syl31anc 1375 . . . 4 (𝜑 → (sup(𝐵, ℝ, < ) · sup(𝐴, ℝ, < )) = sup({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}, ℝ, < ))
3612, 35eqtrd 2765 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}, ℝ, < ))
37 vex 3454 . . . . . . 7 𝑤 ∈ V
38 eqeq1 2734 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 = (sup(𝐵, ℝ, < ) · 𝑎) ↔ 𝑤 = (sup(𝐵, ℝ, < ) · 𝑎)))
3938rexbidv 3158 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎) ↔ ∃𝑎𝐴 𝑤 = (sup(𝐵, ℝ, < ) · 𝑎)))
4037, 39elab 3649 . . . . . 6 (𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} ↔ ∃𝑎𝐴 𝑤 = (sup(𝐵, ℝ, < ) · 𝑎))
417adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → sup(𝐵, ℝ, < ) ∈ ℝ)
422simp1d 1142 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
4342sselda 3949 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
44 recn 11165 . . . . . . . . . . 11 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
45 mulcom 11161 . . . . . . . . . . 11 ((sup(𝐵, ℝ, < ) ∈ ℂ ∧ 𝑎 ∈ ℂ) → (sup(𝐵, ℝ, < ) · 𝑎) = (𝑎 · sup(𝐵, ℝ, < )))
469, 44, 45syl2an 596 . . . . . . . . . 10 ((sup(𝐵, ℝ, < ) ∈ ℝ ∧ 𝑎 ∈ ℝ) → (sup(𝐵, ℝ, < ) · 𝑎) = (𝑎 · sup(𝐵, ℝ, < )))
4741, 43, 46syl2anc 584 . . . . . . . . 9 ((𝜑𝑎𝐴) → (sup(𝐵, ℝ, < ) · 𝑎) = (𝑎 · sup(𝐵, ℝ, < )))
48 breq2 5114 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑎))
4948rspccv 3588 . . . . . . . . . . . . 13 (∀𝑥𝐴 0 ≤ 𝑥 → (𝑎𝐴 → 0 ≤ 𝑎))
5031, 49syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑎𝐴 → 0 ≤ 𝑎))
5150imp 406 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → 0 ≤ 𝑎)
5221adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → ∀𝑥𝐵 0 ≤ 𝑥)
535adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
54 eqid 2730 . . . . . . . . . . . 12 {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} = {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}
55 biid 261 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) ↔ ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
5654, 55supmul1 12159 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → (𝑎 · sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}, ℝ, < ))
5743, 51, 52, 53, 56syl31anc 1375 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑎 · sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}, ℝ, < ))
58 eqeq1 2734 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
5958rexbidv 3158 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (∃𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
6037, 59elab 3649 . . . . . . . . . . . . 13 (𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ↔ ∃𝑏𝐵 𝑤 = (𝑎 · 𝑏))
61 rspe 3228 . . . . . . . . . . . . . . . 16 ((𝑎𝐴 ∧ ∃𝑏𝐵 𝑤 = (𝑎 · 𝑏)) → ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
62 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
6362eqeq2d 2741 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
6463rexbidv 3158 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
6564cbvrexvw 3217 . . . . . . . . . . . . . . . . . 18 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
66582rexbidv 3203 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
6765, 66bitrid 283 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
68 supmul.1 . . . . . . . . . . . . . . . . 17 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
6937, 67, 68elab2 3652 . . . . . . . . . . . . . . . 16 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
7061, 69sylibr 234 . . . . . . . . . . . . . . 15 ((𝑎𝐴 ∧ ∃𝑏𝐵 𝑤 = (𝑎 · 𝑏)) → 𝑤𝐶)
7170ex 412 . . . . . . . . . . . . . 14 (𝑎𝐴 → (∃𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤𝐶))
7268, 1supmullem2 12161 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
73 suprub 12151 . . . . . . . . . . . . . . . 16 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
7473ex 412 . . . . . . . . . . . . . . 15 ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) → (𝑤𝐶𝑤 ≤ sup(𝐶, ℝ, < )))
7572, 74syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝐶𝑤 ≤ sup(𝐶, ℝ, < )))
7671, 75sylan9r 508 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (∃𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ≤ sup(𝐶, ℝ, < )))
7760, 76biimtrid 242 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → (𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} → 𝑤 ≤ sup(𝐶, ℝ, < )))
7877ralrimiv 3125 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < ))
7943adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → 𝑎 ∈ ℝ)
8018adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → 𝑏 ∈ ℝ)
8179, 80remulcld 11211 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑎 · 𝑏) ∈ ℝ)
82 eleq1a 2824 . . . . . . . . . . . . . . 15 ((𝑎 · 𝑏) ∈ ℝ → (𝑧 = (𝑎 · 𝑏) → 𝑧 ∈ ℝ))
8381, 82syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐴) ∧ 𝑏𝐵) → (𝑧 = (𝑎 · 𝑏) → 𝑧 ∈ ℝ))
8483rexlimdva 3135 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → (∃𝑏𝐵 𝑧 = (𝑎 · 𝑏) → 𝑧 ∈ ℝ))
8584abssdv 4034 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ⊆ ℝ)
86 ovex 7423 . . . . . . . . . . . . . . . . . . 19 (𝑎 · 𝑏) ∈ V
8786isseti 3468 . . . . . . . . . . . . . . . . . 18 𝑤 𝑤 = (𝑎 · 𝑏)
8887rgenw 3049 . . . . . . . . . . . . . . . . 17 𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)
89 r19.2z 4461 . . . . . . . . . . . . . . . . 17 ((𝐵 ≠ ∅ ∧ ∀𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)) → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
9013, 88, 89sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
91 rexcom4 3265 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
9290, 91sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
9359cbvexvw 2037 . . . . . . . . . . . . . . 15 (∃𝑧𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
9492, 93sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑧𝑏𝐵 𝑧 = (𝑎 · 𝑏))
95 abn0 4351 . . . . . . . . . . . . . 14 ({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ≠ ∅ ↔ ∃𝑧𝑏𝐵 𝑧 = (𝑎 · 𝑏))
9694, 95sylibr 234 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ≠ ∅)
9796adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ≠ ∅)
98 suprcl 12150 . . . . . . . . . . . . . . 15 ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) → sup(𝐶, ℝ, < ) ∈ ℝ)
9972, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
10099adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎𝐴) → sup(𝐶, ℝ, < ) ∈ ℝ)
101 brralrspcev 5170 . . . . . . . . . . . . 13 ((sup(𝐶, ℝ, < ) ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤𝑥)
102100, 78, 101syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤𝑥)
103 suprleub 12156 . . . . . . . . . . . 12 ((({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤𝑥) ∧ sup(𝐶, ℝ, < ) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )))
10485, 97, 102, 100, 103syl31anc 1375 . . . . . . . . . . 11 ((𝜑𝑎𝐴) → (sup({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )))
10578, 104mpbird 257 . . . . . . . . . 10 ((𝜑𝑎𝐴) → sup({𝑧 ∣ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ))
10657, 105eqbrtrd 5132 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎 · sup(𝐵, ℝ, < )) ≤ sup(𝐶, ℝ, < ))
10747, 106eqbrtrd 5132 . . . . . . . 8 ((𝜑𝑎𝐴) → (sup(𝐵, ℝ, < ) · 𝑎) ≤ sup(𝐶, ℝ, < ))
108 breq1 5113 . . . . . . . 8 (𝑤 = (sup(𝐵, ℝ, < ) · 𝑎) → (𝑤 ≤ sup(𝐶, ℝ, < ) ↔ (sup(𝐵, ℝ, < ) · 𝑎) ≤ sup(𝐶, ℝ, < )))
109107, 108syl5ibrcom 247 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑤 = (sup(𝐵, ℝ, < ) · 𝑎) → 𝑤 ≤ sup(𝐶, ℝ, < )))
110109rexlimdva 3135 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑤 = (sup(𝐵, ℝ, < ) · 𝑎) → 𝑤 ≤ sup(𝐶, ℝ, < )))
11140, 110biimtrid 242 . . . . 5 (𝜑 → (𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} → 𝑤 ≤ sup(𝐶, ℝ, < )))
112111ralrimiv 3125 . . . 4 (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < ))
11341, 43remulcld 11211 . . . . . . . 8 ((𝜑𝑎𝐴) → (sup(𝐵, ℝ, < ) · 𝑎) ∈ ℝ)
114 eleq1a 2824 . . . . . . . 8 ((sup(𝐵, ℝ, < ) · 𝑎) ∈ ℝ → (𝑧 = (sup(𝐵, ℝ, < ) · 𝑎) → 𝑧 ∈ ℝ))
115113, 114syl 17 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑧 = (sup(𝐵, ℝ, < ) · 𝑎) → 𝑧 ∈ ℝ))
116115rexlimdva 3135 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎) → 𝑧 ∈ ℝ))
117116abssdv 4034 . . . . 5 (𝜑 → {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} ⊆ ℝ)
1182simp2d 1143 . . . . . . . 8 (𝜑𝐴 ≠ ∅)
119 ovex 7423 . . . . . . . . . 10 (sup(𝐵, ℝ, < ) · 𝑎) ∈ V
120119isseti 3468 . . . . . . . . 9 𝑧 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)
121120rgenw 3049 . . . . . . . 8 𝑎𝐴𝑧 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)
122 r19.2z 4461 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑧 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)) → ∃𝑎𝐴𝑧 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎))
123118, 121, 122sylancl 586 . . . . . . 7 (𝜑 → ∃𝑎𝐴𝑧 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎))
124 rexcom4 3265 . . . . . . 7 (∃𝑎𝐴𝑧 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎) ↔ ∃𝑧𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎))
125123, 124sylib 218 . . . . . 6 (𝜑 → ∃𝑧𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎))
126 abn0 4351 . . . . . 6 ({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} ≠ ∅ ↔ ∃𝑧𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎))
127125, 126sylibr 234 . . . . 5 (𝜑 → {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} ≠ ∅)
128 brralrspcev 5170 . . . . . 6 ((sup(𝐶, ℝ, < ) ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤𝑥)
12999, 112, 128syl2anc 584 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤𝑥)
130 suprleub 12156 . . . . 5 ((({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤𝑥) ∧ sup(𝐶, ℝ, < ) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )))
131117, 127, 129, 99, 130syl31anc 1375 . . . 4 (𝜑 → (sup({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )))
132112, 131mpbird 257 . . 3 (𝜑 → sup({𝑧 ∣ ∃𝑎𝐴 𝑧 = (sup(𝐵, ℝ, < ) · 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ))
13336, 132eqbrtrd 5132 . 2 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ≤ sup(𝐶, ℝ, < ))
13468, 1supmullem1 12160 . . 3 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
1354, 7remulcld 11211 . . . 4 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ)
136 suprleub 12156 . . . 4 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
13772, 135, 136syl2anc 584 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))))
138134, 137mpbird 257 . 2 (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
139135, 99letri3d 11323 . 2 (𝜑 → ((sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ) ↔ ((sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ≤ sup(𝐶, ℝ, < ) ∧ sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))))
140133, 138, 139mpbir2and 713 1 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by:  01sqrexlem5  15219
  Copyright terms: Public domain W3C validator