| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | supadd.a1 | . . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 2 |  | supadd.a2 | . . . . 5
⊢ (𝜑 → 𝐴 ≠ ∅) | 
| 3 |  | supadd.a3 | . . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 4 |  | supadd.b1 | . . . . . 6
⊢ (𝜑 → 𝐵 ⊆ ℝ) | 
| 5 |  | supadd.b2 | . . . . . 6
⊢ (𝜑 → 𝐵 ≠ ∅) | 
| 6 |  | supadd.b3 | . . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) | 
| 7 | 4, 5, 6 | suprcld 12232 | . . . . 5
⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈
ℝ) | 
| 8 |  | eqid 2736 | . . . . 5
⊢ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))} | 
| 9 | 1, 2, 3, 7, 8 | supaddc 12236 | . . . 4
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))}, ℝ, <
)) | 
| 10 | 1 | sselda 3982 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) | 
| 11 | 10 | recnd 11290 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℂ) | 
| 12 | 7 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐵, ℝ, < ) ∈
ℝ) | 
| 13 | 12 | recnd 11290 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐵, ℝ, < ) ∈
ℂ) | 
| 14 | 11, 13 | addcomd 11464 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 + sup(𝐵, ℝ, < )) = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 15 | 14 | eqeq2d 2747 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑧 = (𝑎 + sup(𝐵, ℝ, < )) ↔ 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎))) | 
| 16 | 15 | rexbidva 3176 | . . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < )) ↔ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎))) | 
| 17 | 16 | abbidv 2807 | . . . . 5
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}) | 
| 18 | 17 | supeq1d 9487 | . . . 4
⊢ (𝜑 → sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))}, ℝ, < ) =
sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < )) | 
| 19 | 9, 18 | eqtrd 2776 | . . 3
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < )) | 
| 20 |  | vex 3483 | . . . . . . 7
⊢ 𝑤 ∈ V | 
| 21 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) ↔ 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎))) | 
| 22 | 21 | rexbidv 3178 | . . . . . . 7
⊢ (𝑧 = 𝑤 → (∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎))) | 
| 23 | 20, 22 | elab 3678 | . . . . . 6
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ↔ ∃𝑎 ∈ 𝐴 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 24 | 4 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐵 ⊆ ℝ) | 
| 25 | 5 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐵 ≠ ∅) | 
| 26 | 6 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) | 
| 27 |  | eqid 2736 | . . . . . . . . . . 11
⊢ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)} = {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)} | 
| 28 | 24, 25, 26, 10, 27 | supaddc 12236 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) = sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)}, ℝ, < )) | 
| 29 | 4 | sselda 3982 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ℝ) | 
| 30 | 29 | adantlr 715 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ℝ) | 
| 31 | 30 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ℂ) | 
| 32 | 10 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ ℝ) | 
| 33 | 32 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ ℂ) | 
| 34 | 31, 33 | addcomd 11464 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑏 + 𝑎) = (𝑎 + 𝑏)) | 
| 35 | 34 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑧 = (𝑏 + 𝑎) ↔ 𝑧 = (𝑎 + 𝑏))) | 
| 36 | 35 | rexbidva 3176 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎) ↔ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏))) | 
| 37 | 36 | abbidv 2807 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)} = {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}) | 
| 38 | 37 | supeq1d 9487 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)}, ℝ, < ) = sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < )) | 
| 39 | 28, 38 | eqtrd 2776 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) = sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < )) | 
| 40 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝑏) ↔ 𝑤 = (𝑎 + 𝑏))) | 
| 41 | 40 | rexbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏) ↔ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏))) | 
| 42 | 20, 41 | elab 3678 | . . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ↔ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 43 |  | rspe 3248 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝐴 ∧ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 44 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑎 → (𝑣 + 𝑏) = (𝑎 + 𝑏)) | 
| 45 | 44 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝑏) ↔ 𝑧 = (𝑎 + 𝑏))) | 
| 46 | 45 | rexbidv 3178 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑎 → (∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏) ↔ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏))) | 
| 47 | 46 | cbvrexvw 3237 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑣 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) | 
| 48 | 40 | 2rexbidv 3221 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏))) | 
| 49 | 47, 48 | bitrid 283 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → (∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏))) | 
| 50 |  | supadd.c | . . . . . . . . . . . . . . . 16
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏)} | 
| 51 | 20, 49, 50 | elab2 3681 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐶 ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 52 | 43, 51 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐴 ∧ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) → 𝑤 ∈ 𝐶) | 
| 53 | 52 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝐴 → (∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ 𝐶)) | 
| 54 | 1 | sseld 3981 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) | 
| 55 | 4 | sseld 3981 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑏 ∈ 𝐵 → 𝑏 ∈ ℝ)) | 
| 56 | 54, 55 | anim12d 609 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))) | 
| 57 |  | readdcl 11239 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 + 𝑏) ∈ ℝ) | 
| 58 | 56, 57 | syl6 35 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ ℝ)) | 
| 59 |  | eleq1a 2835 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 + 𝑏) ∈ ℝ → (𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ ℝ)) | 
| 60 | 58, 59 | syl6 35 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ ℝ))) | 
| 61 | 60 | rexlimdvv 3211 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ ℝ)) | 
| 62 | 51, 61 | biimtrid 242 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ)) | 
| 63 | 62 | ssrdv 3988 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ⊆ ℝ) | 
| 64 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 + 𝑏) ∈ V | 
| 65 | 64 | isseti 3497 | . . . . . . . . . . . . . . . . . . . . 21
⊢
∃𝑤 𝑤 = (𝑎 + 𝑏) | 
| 66 | 65 | rgenw 3064 | . . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑏 ∈
𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏) | 
| 67 |  | r19.2z 4494 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ≠ ∅ ∧
∀𝑏 ∈ 𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏)) → ∃𝑏 ∈ 𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏)) | 
| 68 | 5, 66, 67 | sylancl 586 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∃𝑏 ∈ 𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏)) | 
| 69 |  | rexcom4 3287 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑏 ∈
𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏) ↔ ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 70 | 68, 69 | sylib 218 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 71 | 70 | ralrimivw 3149 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 72 |  | r19.2z 4494 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ≠ ∅ ∧
∀𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) → ∃𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 73 | 2, 71, 72 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 74 |  | rexcom4 3287 | . . . . . . . . . . . . . . . 16
⊢
(∃𝑎 ∈
𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) ↔ ∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 75 | 73, 74 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 76 |  | n0 4352 | . . . . . . . . . . . . . . . 16
⊢ (𝐶 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐶) | 
| 77 | 51 | exbii 1847 | . . . . . . . . . . . . . . . 16
⊢
(∃𝑤 𝑤 ∈ 𝐶 ↔ ∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 78 | 76, 77 | bitri 275 | . . . . . . . . . . . . . . 15
⊢ (𝐶 ≠ ∅ ↔
∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) | 
| 79 | 75, 78 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ≠ ∅) | 
| 80 | 1, 2, 3 | suprcld 12232 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℝ) | 
| 81 | 80, 7 | readdcld 11291 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ∈
ℝ) | 
| 82 | 10 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ ℝ) | 
| 83 | 29 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ ℝ) | 
| 84 | 80 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → sup(𝐴, ℝ, < ) ∈
ℝ) | 
| 85 | 7 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → sup(𝐵, ℝ, < ) ∈
ℝ) | 
| 86 | 1, 2, 3 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | 
| 87 |  | suprub 12230 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < )) | 
| 88 | 86, 87 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < )) | 
| 89 | 88 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < )) | 
| 90 | 4, 5, 6 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥)) | 
| 91 |  | suprub 12230 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) ∧ 𝑏 ∈ 𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < )) | 
| 92 | 90, 91 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < )) | 
| 93 | 92 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < )) | 
| 94 | 82, 83, 84, 85, 89, 93 | le2addd 11883 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))) | 
| 95 | 94 | ex 412 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 96 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (𝑎 + 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ↔ (𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 97 | 96 | biimprcd 250 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 98 | 95, 97 | syl6 35 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))))) | 
| 99 | 98 | rexlimdvv 3211 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 100 | 51, 99 | biimtrid 242 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 101 | 100 | ralrimiv 3144 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))) | 
| 102 |  | brralrspcev 5202 | . . . . . . . . . . . . . . 15
⊢
(((sup(𝐴, ℝ,
< ) + sup(𝐵, ℝ,
< )) ∈ ℝ ∧ ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) | 
| 103 | 81, 101, 102 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) | 
| 104 |  | suprub 12230 | . . . . . . . . . . . . . . 15
⊢ (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) ∧ 𝑤 ∈ 𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < )) | 
| 105 | 104 | ex 412 | . . . . . . . . . . . . . 14
⊢ ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) → (𝑤 ∈ 𝐶 → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 106 | 63, 79, 103, 105 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 107 | 53, 106 | sylan9r 508 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 108 | 42, 107 | biimtrid 242 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 109 | 108 | ralrimiv 3144 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )) | 
| 110 | 32, 30 | readdcld 11291 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ ℝ) | 
| 111 |  | eleq1a 2835 | . . . . . . . . . . . . . 14
⊢ ((𝑎 + 𝑏) ∈ ℝ → (𝑧 = (𝑎 + 𝑏) → 𝑧 ∈ ℝ)) | 
| 112 | 110, 111 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑧 = (𝑎 + 𝑏) → 𝑧 ∈ ℝ)) | 
| 113 | 112 | rexlimdva 3154 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏) → 𝑧 ∈ ℝ)) | 
| 114 | 113 | abssdv 4067 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ⊆ ℝ) | 
| 115 | 64 | isseti 3497 | . . . . . . . . . . . . . . . 16
⊢
∃𝑧 𝑧 = (𝑎 + 𝑏) | 
| 116 | 115 | rgenw 3064 | . . . . . . . . . . . . . . 15
⊢
∀𝑏 ∈
𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏) | 
| 117 |  | r19.2z 4494 | . . . . . . . . . . . . . . 15
⊢ ((𝐵 ≠ ∅ ∧
∀𝑏 ∈ 𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏)) → ∃𝑏 ∈ 𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏)) | 
| 118 | 5, 116, 117 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∃𝑏 ∈ 𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏)) | 
| 119 |  | rexcom4 3287 | . . . . . . . . . . . . . 14
⊢
(∃𝑏 ∈
𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏) ↔ ∃𝑧∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) | 
| 120 | 118, 119 | sylib 218 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑧∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) | 
| 121 |  | abn0 4384 | . . . . . . . . . . . . 13
⊢ ({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅ ↔ ∃𝑧∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) | 
| 122 | 120, 121 | sylibr 234 | . . . . . . . . . . . 12
⊢ (𝜑 → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅) | 
| 123 | 122 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅) | 
| 124 | 63, 79, 103 | suprcld 12232 | . . . . . . . . . . . . 13
⊢ (𝜑 → sup(𝐶, ℝ, < ) ∈
ℝ) | 
| 125 | 124 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐶, ℝ, < ) ∈
ℝ) | 
| 126 |  | brralrspcev 5202 | . . . . . . . . . . . 12
⊢
((sup(𝐶, ℝ,
< ) ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ 𝑥) | 
| 127 | 125, 109,
126 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ 𝑥) | 
| 128 |  | suprleub 12235 | . . . . . . . . . . 11
⊢ ((({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ 𝑥) ∧ sup(𝐶, ℝ, < ) ∈ ℝ) →
(sup({𝑧 ∣
∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 129 | 114, 123,
127, 125, 128 | syl31anc 1374 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 130 | 109, 129 | mpbird 257 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, <
)) | 
| 131 | 39, 130 | eqbrtrd 5164 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) ≤ sup(𝐶, ℝ, < )) | 
| 132 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑤 = (sup(𝐵, ℝ, < ) + 𝑎) → (𝑤 ≤ sup(𝐶, ℝ, < ) ↔ (sup(𝐵, ℝ, < ) + 𝑎) ≤ sup(𝐶, ℝ, < ))) | 
| 133 | 131, 132 | syl5ibrcom 247 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 134 | 133 | rexlimdva 3154 | . . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 135 | 23, 134 | biimtrid 242 | . . . . 5
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} → 𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 136 | 135 | ralrimiv 3144 | . . . 4
⊢ (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )) | 
| 137 | 12, 10 | readdcld 11291 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) ∈ ℝ) | 
| 138 |  | eleq1a 2835 | . . . . . . . 8
⊢
((sup(𝐵, ℝ,
< ) + 𝑎) ∈ ℝ
→ (𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑧 ∈ ℝ)) | 
| 139 | 137, 138 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑧 ∈ ℝ)) | 
| 140 | 139 | rexlimdva 3154 | . . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑧 ∈ ℝ)) | 
| 141 | 140 | abssdv 4067 | . . . . 5
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ⊆ ℝ) | 
| 142 |  | ovex 7465 | . . . . . . . . . 10
⊢
(sup(𝐵, ℝ,
< ) + 𝑎) ∈
V | 
| 143 | 142 | isseti 3497 | . . . . . . . . 9
⊢
∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) | 
| 144 | 143 | rgenw 3064 | . . . . . . . 8
⊢
∀𝑎 ∈
𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) | 
| 145 |  | r19.2z 4494 | . . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑎 ∈ 𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) → ∃𝑎 ∈ 𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 146 | 2, 144, 145 | sylancl 586 | . . . . . . 7
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 147 |  | rexcom4 3287 | . . . . . . 7
⊢
(∃𝑎 ∈
𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) ↔ ∃𝑧∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 148 | 146, 147 | sylib 218 | . . . . . 6
⊢ (𝜑 → ∃𝑧∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 149 |  | abn0 4384 | . . . . . 6
⊢ ({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ≠ ∅ ↔ ∃𝑧∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) | 
| 150 | 148, 149 | sylibr 234 | . . . . 5
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ≠ ∅) | 
| 151 |  | brralrspcev 5202 | . . . . . 6
⊢
((sup(𝐶, ℝ,
< ) ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ 𝑥) | 
| 152 | 124, 136,
151 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ 𝑥) | 
| 153 |  | suprleub 12235 | . . . . 5
⊢ ((({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ 𝑥) ∧ sup(𝐶, ℝ, < ) ∈ ℝ) →
(sup({𝑧 ∣
∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 154 | 141, 150,
152, 124, 153 | syl31anc 1374 | . . . 4
⊢ (𝜑 → (sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < ))) | 
| 155 | 136, 154 | mpbird 257 | . . 3
⊢ (𝜑 → sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, <
)) | 
| 156 | 19, 155 | eqbrtrd 5164 | . 2
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ≤ sup(𝐶, ℝ, <
)) | 
| 157 |  | suprleub 12235 | . . . 4
⊢ (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) ∧ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ∈ ℝ) →
(sup(𝐶, ℝ, < )
≤ (sup(𝐴, ℝ, <
) + sup(𝐵, ℝ, < ))
↔ ∀𝑤 ∈
𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 158 | 63, 79, 103, 81, 157 | syl31anc 1374 | . . 3
⊢ (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ↔
∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) | 
| 159 | 101, 158 | mpbird 257 | . 2
⊢ (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, <
))) | 
| 160 | 81, 124 | letri3d 11404 | . 2
⊢ (𝜑 → ((sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ) ↔ ((sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ≤
sup(𝐶, ℝ, < )
∧ sup(𝐶, ℝ, <
) ≤ (sup(𝐴, ℝ,
< ) + sup(𝐵, ℝ,
< ))))) | 
| 161 | 156, 159,
160 | mpbir2and 713 | 1
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) |