Step | Hyp | Ref
| Expression |
1 | | supadd.a1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | | supadd.a2 |
. . . . 5
⊢ (𝜑 → 𝐴 ≠ ∅) |
3 | | supadd.a3 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
4 | | supadd.b1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
5 | | supadd.b2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≠ ∅) |
6 | | supadd.b3 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) |
7 | 4, 5, 6 | suprcld 11938 |
. . . . 5
⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈
ℝ) |
8 | | eqid 2738 |
. . . . 5
⊢ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))} |
9 | 1, 2, 3, 7, 8 | supaddc 11942 |
. . . 4
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))}, ℝ, <
)) |
10 | 1 | sselda 3921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
11 | 10 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℂ) |
12 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐵, ℝ, < ) ∈
ℝ) |
13 | 12 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐵, ℝ, < ) ∈
ℂ) |
14 | 11, 13 | addcomd 11177 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 + sup(𝐵, ℝ, < )) = (sup(𝐵, ℝ, < ) + 𝑎)) |
15 | 14 | eqeq2d 2749 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑧 = (𝑎 + sup(𝐵, ℝ, < )) ↔ 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎))) |
16 | 15 | rexbidva 3225 |
. . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < )) ↔ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎))) |
17 | 16 | abbidv 2807 |
. . . . 5
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}) |
18 | 17 | supeq1d 9205 |
. . . 4
⊢ (𝜑 → sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + sup(𝐵, ℝ, < ))}, ℝ, < ) =
sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < )) |
19 | 9, 18 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < )) |
20 | | vex 3436 |
. . . . . . 7
⊢ 𝑤 ∈ V |
21 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) ↔ 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎))) |
22 | 21 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎))) |
23 | 20, 22 | elab 3609 |
. . . . . 6
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ↔ ∃𝑎 ∈ 𝐴 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎)) |
24 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐵 ⊆ ℝ) |
25 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐵 ≠ ∅) |
26 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) |
27 | | eqid 2738 |
. . . . . . . . . . 11
⊢ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)} = {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)} |
28 | 24, 25, 26, 10, 27 | supaddc 11942 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) = sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)}, ℝ, < )) |
29 | 4 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ℝ) |
30 | 29 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ℝ) |
31 | 30 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ ℂ) |
32 | 10 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ ℝ) |
33 | 32 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ ℂ) |
34 | 31, 33 | addcomd 11177 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑏 + 𝑎) = (𝑎 + 𝑏)) |
35 | 34 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑧 = (𝑏 + 𝑎) ↔ 𝑧 = (𝑎 + 𝑏))) |
36 | 35 | rexbidva 3225 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎) ↔ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏))) |
37 | 36 | abbidv 2807 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)} = {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}) |
38 | 37 | supeq1d 9205 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑏 + 𝑎)}, ℝ, < ) = sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < )) |
39 | 28, 38 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) = sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < )) |
40 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝑏) ↔ 𝑤 = (𝑎 + 𝑏))) |
41 | 40 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏) ↔ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏))) |
42 | 20, 41 | elab 3609 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ↔ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
43 | | rspe 3237 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝐴 ∧ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
44 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑎 → (𝑣 + 𝑏) = (𝑎 + 𝑏)) |
45 | 44 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝑏) ↔ 𝑧 = (𝑎 + 𝑏))) |
46 | 45 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑎 → (∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏) ↔ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏))) |
47 | 46 | cbvrexvw 3384 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑣 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) |
48 | 40 | 2rexbidv 3229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏))) |
49 | 47, 48 | bitrid 282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → (∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏) ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏))) |
50 | | supadd.c |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏)} |
51 | 20, 49, 50 | elab2 3613 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐶 ↔ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
52 | 43, 51 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐴 ∧ ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) → 𝑤 ∈ 𝐶) |
53 | 52 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝐴 → (∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ 𝐶)) |
54 | 1 | sseld 3920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) |
55 | 4 | sseld 3920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑏 ∈ 𝐵 → 𝑏 ∈ ℝ)) |
56 | 54, 55 | anim12d 609 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))) |
57 | | readdcl 10954 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 + 𝑏) ∈ ℝ) |
58 | 56, 57 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ ℝ)) |
59 | | eleq1a 2834 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 + 𝑏) ∈ ℝ → (𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ ℝ)) |
60 | 58, 59 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ ℝ))) |
61 | 60 | rexlimdvv 3222 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ∈ ℝ)) |
62 | 51, 61 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ)) |
63 | 62 | ssrdv 3927 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ⊆ ℝ) |
64 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 + 𝑏) ∈ V |
65 | 64 | isseti 3447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
∃𝑤 𝑤 = (𝑎 + 𝑏) |
66 | 65 | rgenw 3076 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑏 ∈
𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏) |
67 | | r19.2z 4425 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ≠ ∅ ∧
∀𝑏 ∈ 𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏)) → ∃𝑏 ∈ 𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏)) |
68 | 5, 66, 67 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∃𝑏 ∈ 𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏)) |
69 | | rexcom4 3233 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑏 ∈
𝐵 ∃𝑤 𝑤 = (𝑎 + 𝑏) ↔ ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
70 | 68, 69 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
71 | 70 | ralrimivw 3104 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
72 | | r19.2z 4425 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ≠ ∅ ∧
∀𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) → ∃𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
73 | 2, 71, 72 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
74 | | rexcom4 3233 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑎 ∈
𝐴 ∃𝑤∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) ↔ ∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
75 | 73, 74 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
76 | | n0 4280 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐶) |
77 | 51 | exbii 1850 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑤 𝑤 ∈ 𝐶 ↔ ∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
78 | 76, 77 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ≠ ∅ ↔
∃𝑤∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏)) |
79 | 75, 78 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ≠ ∅) |
80 | 1, 2, 3 | suprcld 11938 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℝ) |
81 | 80, 7 | readdcld 11004 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ∈
ℝ) |
82 | 10 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ ℝ) |
83 | 29 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ ℝ) |
84 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → sup(𝐴, ℝ, < ) ∈
ℝ) |
85 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → sup(𝐵, ℝ, < ) ∈
ℝ) |
86 | 1, 2, 3 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
87 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < )) |
88 | 86, 87 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < )) |
89 | 88 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ≤ sup(𝐴, ℝ, < )) |
90 | 4, 5, 6 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥)) |
91 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) ∧ 𝑏 ∈ 𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < )) |
92 | 90, 91 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < )) |
93 | 92 | adantrl 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ≤ sup(𝐵, ℝ, < )) |
94 | 82, 83, 84, 85, 89, 93 | le2addd 11594 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))) |
95 | 94 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
96 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (𝑎 + 𝑏) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ↔ (𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
97 | 96 | biimprcd 249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 + 𝑏) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) → (𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
98 | 95, 97 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))))) |
99 | 98 | rexlimdvv 3222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
100 | 51, 99 | syl5bi 241 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
101 | 100 | ralrimiv 3102 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))) |
102 | | brralrspcev 5134 |
. . . . . . . . . . . . . . 15
⊢
(((sup(𝐴, ℝ,
< ) + sup(𝐵, ℝ,
< )) ∈ ℝ ∧ ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) |
103 | 81, 101, 102 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) |
104 | | suprub 11936 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) ∧ 𝑤 ∈ 𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < )) |
105 | 104 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) → (𝑤 ∈ 𝐶 → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
106 | 63, 79, 103, 105 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
107 | 53, 106 | sylan9r 509 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑤 = (𝑎 + 𝑏) → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
108 | 42, 107 | syl5bi 241 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
109 | 108 | ralrimiv 3102 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )) |
110 | 32, 30 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑎 + 𝑏) ∈ ℝ) |
111 | | eleq1a 2834 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 + 𝑏) ∈ ℝ → (𝑧 = (𝑎 + 𝑏) → 𝑧 ∈ ℝ)) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑏 ∈ 𝐵) → (𝑧 = (𝑎 + 𝑏) → 𝑧 ∈ ℝ)) |
113 | 112 | rexlimdva 3213 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏) → 𝑧 ∈ ℝ)) |
114 | 113 | abssdv 4002 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ⊆ ℝ) |
115 | 64 | isseti 3447 |
. . . . . . . . . . . . . . . 16
⊢
∃𝑧 𝑧 = (𝑎 + 𝑏) |
116 | 115 | rgenw 3076 |
. . . . . . . . . . . . . . 15
⊢
∀𝑏 ∈
𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏) |
117 | | r19.2z 4425 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ≠ ∅ ∧
∀𝑏 ∈ 𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏)) → ∃𝑏 ∈ 𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏)) |
118 | 5, 116, 117 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∃𝑏 ∈ 𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏)) |
119 | | rexcom4 3233 |
. . . . . . . . . . . . . 14
⊢
(∃𝑏 ∈
𝐵 ∃𝑧 𝑧 = (𝑎 + 𝑏) ↔ ∃𝑧∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) |
120 | 118, 119 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑧∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) |
121 | | abn0 4314 |
. . . . . . . . . . . . 13
⊢ ({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅ ↔ ∃𝑧∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)) |
122 | 120, 121 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅) |
123 | 122 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅) |
124 | 63, 79, 103 | suprcld 11938 |
. . . . . . . . . . . . 13
⊢ (𝜑 → sup(𝐶, ℝ, < ) ∈
ℝ) |
125 | 124 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐶, ℝ, < ) ∈
ℝ) |
126 | | brralrspcev 5134 |
. . . . . . . . . . . 12
⊢
((sup(𝐶, ℝ,
< ) ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ 𝑥) |
127 | 125, 109,
126 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ 𝑥) |
128 | | suprleub 11941 |
. . . . . . . . . . 11
⊢ ((({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ 𝑥) ∧ sup(𝐶, ℝ, < ) ∈ ℝ) →
(sup({𝑧 ∣
∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < ))) |
129 | 114, 123,
127, 125, 128 | syl31anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}𝑤 ≤ sup(𝐶, ℝ, < ))) |
130 | 109, 129 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup({𝑧 ∣ ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 + 𝑏)}, ℝ, < ) ≤ sup(𝐶, ℝ, <
)) |
131 | 39, 130 | eqbrtrd 5096 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) ≤ sup(𝐶, ℝ, < )) |
132 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑤 = (sup(𝐵, ℝ, < ) + 𝑎) → (𝑤 ≤ sup(𝐶, ℝ, < ) ↔ (sup(𝐵, ℝ, < ) + 𝑎) ≤ sup(𝐶, ℝ, < ))) |
133 | 131, 132 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
134 | 133 | rexlimdva 3213 |
. . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑤 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
135 | 23, 134 | syl5bi 241 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} → 𝑤 ≤ sup(𝐶, ℝ, < ))) |
136 | 135 | ralrimiv 3102 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )) |
137 | 12, 10 | readdcld 11004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (sup(𝐵, ℝ, < ) + 𝑎) ∈ ℝ) |
138 | | eleq1a 2834 |
. . . . . . . 8
⊢
((sup(𝐵, ℝ,
< ) + 𝑎) ∈ ℝ
→ (𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑧 ∈ ℝ)) |
139 | 137, 138 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑧 ∈ ℝ)) |
140 | 139 | rexlimdva 3213 |
. . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) → 𝑧 ∈ ℝ)) |
141 | 140 | abssdv 4002 |
. . . . 5
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ⊆ ℝ) |
142 | | ovex 7308 |
. . . . . . . . . 10
⊢
(sup(𝐵, ℝ,
< ) + 𝑎) ∈
V |
143 | 142 | isseti 3447 |
. . . . . . . . 9
⊢
∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) |
144 | 143 | rgenw 3076 |
. . . . . . . 8
⊢
∀𝑎 ∈
𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) |
145 | | r19.2z 4425 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑎 ∈ 𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) → ∃𝑎 ∈ 𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) |
146 | 2, 144, 145 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) |
147 | | rexcom4 3233 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝐴 ∃𝑧 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎) ↔ ∃𝑧∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) |
148 | 146, 147 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ∃𝑧∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) |
149 | | abn0 4314 |
. . . . . 6
⊢ ({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ≠ ∅ ↔ ∃𝑧∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)) |
150 | 148, 149 | sylibr 233 |
. . . . 5
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ≠ ∅) |
151 | | brralrspcev 5134 |
. . . . . 6
⊢
((sup(𝐶, ℝ,
< ) ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < )) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ 𝑥) |
152 | 124, 136,
151 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ 𝑥) |
153 | | suprleub 11941 |
. . . . 5
⊢ ((({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ 𝑥) ∧ sup(𝐶, ℝ, < ) ∈ ℝ) →
(sup({𝑧 ∣
∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < ))) |
154 | 141, 150,
152, 124, 153 | syl31anc 1372 |
. . . 4
⊢ (𝜑 → (sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, < ) ↔
∀𝑤 ∈ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}𝑤 ≤ sup(𝐶, ℝ, < ))) |
155 | 136, 154 | mpbird 256 |
. . 3
⊢ (𝜑 → sup({𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = (sup(𝐵, ℝ, < ) + 𝑎)}, ℝ, < ) ≤ sup(𝐶, ℝ, <
)) |
156 | 19, 155 | eqbrtrd 5096 |
. 2
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ≤ sup(𝐶, ℝ, <
)) |
157 | | suprleub 11941 |
. . . 4
⊢ (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) ∧ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ∈ ℝ) →
(sup(𝐶, ℝ, < )
≤ (sup(𝐴, ℝ, <
) + sup(𝐵, ℝ, < ))
↔ ∀𝑤 ∈
𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
158 | 63, 79, 103, 81, 157 | syl31anc 1372 |
. . 3
⊢ (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ↔
∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )))) |
159 | 101, 158 | mpbird 256 |
. 2
⊢ (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, <
))) |
160 | 81, 124 | letri3d 11117 |
. 2
⊢ (𝜑 → ((sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ) ↔ ((sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) ≤
sup(𝐶, ℝ, < )
∧ sup(𝐶, ℝ, <
) ≤ (sup(𝐴, ℝ,
< ) + sup(𝐵, ℝ,
< ))))) |
161 | 156, 159,
160 | mpbir2and 710 |
1
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) |